Формула нахождения циклической частоты. Что такое частота колебаний? Логарифмический декремент затухания

Всё на планете имеет свою частоту. Согласно одной из версий, она даже положена в основу нашего мира. Увы, теория весьма сложна, чтобы излагать её в рамках одной публикации, поэтому нами будет рассмотрена исключительно частота колебаний как самостоятельное действие. В рамках статьи будет дано определения этому физическому процессу, его единицам измерений и метрологической составляющей. И под конец будет рассмотрен пример важности в обычной жизни обыкновенного звука. Мы узнаем, что он собой представляет и какова его природа.

Что называют частотой колебаний?

Под этим подразумевают физическую величину, которая используется для характеристики периодического процесса, что равен количеству повторений или возникновений определённых событий за одну единицу времени. Этот показатель рассчитывается как отношение числа данных происшествий к промежутку времени, за который они были совершены. Собственная частота колебаний есть у каждого элемента мира. Тело, атом, дорожный мост, поезд, самолёт - все они совершают определённые движения, которые так называются. Пускай эти процессы не видны глазу, они есть. Единицами измерений, в которых считается частота колебаний, являются герцы. Своё название они получили в честь физика немецкого происхождения Генриха Герца.

Мгновенная частота

Периодический сигнал можно охарактеризовать мгновенной частотой, которая с точностью до коэффициента является скоростью изменения фазы. Его можно представить как сумму гармонических спектральных составляющих, обладающих своими постоянными колебаниями.

Циклическая частота колебаний

Её удобно применять в теоретической физике, особенно в разделе про электромагнетизм. Циклическая частота (её также называют радиальной, круговой, угловой) - это физическая величина, которая используется для обозначения интенсивности происхождения колебательного или вращательного движения. Первая выражается в оборотах или колебаниях на секунду. При вращательном движении частота равняется модулю вектора угловой скорости.

Выражение этого показателя осуществляется в радианах на одну секунду. Размерность циклической частоты является обратной времени. В числовом выражении она равняется числу колебаний или оборотов, что произошли за количество секунд 2π. Её введения для использования позволяет значительно упрощать различный спектр формул в электронике и теоретической физике. Самый популярный пример использования - это обсчёт резонансной циклической частоты колебательного LC-контура. Другие формулы могут значительно усложняться.

Частота дискретных событий

Под этой величиной подразумевают значение, что равно числу дискретных событий, которые происходят за одну единицу времени. В теории обычно используется показатель - секунда в минус первой степени. На практике, чтобы выразить частоту импульсов, обычно применяют герц.

Частота вращения

Под нею понимают физическую величину, которая равняется числу полных оборотов, что происходят за одну единицу времени. Здесь также применяется показатель - секунда в минус первой степени. Для обозначения сделанной работы могут использовать такие словосочетания, как оборот в минуту, час, день, месяц, год и другие.

Единицы измерения

В чём же измеряется частота колебаний? Если брать во внимание систему СИ, то здесь единица измерения - это герц. Первоначально она была введена международной электротехнической комиссией ещё в 1930 году. А 11-я генеральная конференция по весам и мерам в 1960-м закрепила употребление этого показателя как единицы СИ. Что было выдвинуто в качестве «идеала»? Им выступила частота, когда один цикл совершается за одну секунду.

Но что делать с производством? Для них были закреплены произвольные значения: килоцикл, мегацикл в секунду и так далее. Поэтому беря в руки устройство, которое работает с показателем в ГГц (как процессор компьютера), можете примерно представить, сколько действий оно совершает. Казалось бы, как медленно для человека тянется время. Но техника за тот же промежуток успевает выполнять миллионы и даже миллиарды операций в секунду. За один час компьютер делает уже столько действий, что большинство людей даже не смогут представить их в численном выражении.

Метрологические аспекты

Частота колебаний нашла своё применение даже в метрологии. Различные устройства имеют много функций:

  1. Измеряют частоту импульсов. Они представлены электронно-счётными и конденсаторными типами.
  2. Определяют частоту спектральных составляющих. Существуют гетеродинные и резонансные типы.
  3. Производят анализ спектра.
  4. Воспроизводят необходимую частоту с заданной точностью. При этом могут применяться различные меры: стандарты, синтезаторы, генераторы сигналов и другая техника этого направления.
  5. Сравнивают показатели полученных колебаний, в этих целях используют компаратор или осциллограф.

Пример работы: звук

Всё выше написанное может быть довольно сложным для понимания, поскольку нами использовался сухой язык физики. Чтобы осознать приведённую информацию, можно привести пример. В нём всё будет детально расписано, основываясь на анализе случаев из современной жизни. Для этого рассмотрим самый известный пример колебаний - звук. Его свойства, а также особенности осуществления механических упругих колебаний в среде, находятся в прямой зависимости от частоты.

Человеческие органы слуха могут улавливать колебания, которые находятся в рамках от 20 Гц до 20 кГц. Причём с возрастом верхняя граница будет постепенно снижаться. Если частота колебаний звука упадёт ниже показателя в 20 Гц (что соответствует ми субконтроктавы), то будет создаваться инфразвук. Этот тип, который в большинстве случаев не слышен нам, люди всё же могут ощущать осязательно. При превышении границы в 20 килогерц генерируются колебания, которые называются ультразвуком. Если частота превысит 1 ГГц, то в этом случае мы будем иметь дело с гиперзвуком. Если рассматривать такой музыкальный инструмент, как фортепиано, то он может создавать колебания в диапазоне от 27,5 Гц до 4186 Гц. При этом следует учитывать, что музыкальный звук не состоит только из основной частоты - к нему ещё примешиваются обертоны, гармоники. Это всё вместе определяет тембр.

Заключение

Как вы имели возможность узнать, частота колебаний является чрезвычайно важной составляющей, которая позволяет функционировать нашему миру. Благодаря ей мы можем слышать, с её содействия работают компьютеры и осуществляется множество других полезных вещей. Но если частота колебаний превысит оптимальный предел, то могут начаться определённые разрушения. Так, если повлиять на процессор, чтобы его кристалл работал с вдвое большими показателями, то он быстро выйдет из строя.

Подобное можно привести и с человеческой жизнью, когда при высокой частотности у него лопнут барабанные перепонки. Также произойдут другие негативные изменения с телом, которые повлекут за собой определённые проблемы, вплоть до смертельного исхода. Причём из-за особенности физической природы этот процесс растянется на довольно длительный промежуток времени. Кстати, беря во внимание этот фактор, военные рассматривают новые возможности для разработки вооружения будущего.

6.Колебания

6.1.Основные понятия и законы

Движение называется периодическим , если

x(t) = x(t + T ) , где T

Колебание

периодическое

движение

положения равновесия. На рис.6.1 в

качестве

изображены

периодические

негармонические

колебания

положения

равновесия

x 0 = 0.

Период T – это время, за

совершается

колебание.

колебаний в единицу времени

Круговая (циклическая) частота

ω= 2 πν =

Гармоническими

называются колебания, при которых смещение

от положения равновесия в зависимости от времени

изменяется по закону синуса или косинуса

x = A sin (ω0 t + α)

где A

амплитуда колебаний (максимальное смещение точки от

положения равновесия), ω 0 - круговая частота гармонических колебаний, ω 0 t + α - фаза, α - начальная фаза (при t = 0).

Система, совершающая гармонические колебания, называется

классическим гармоническим осциллятором или колебательной

системой.

Скорость

и ускорение

гармонических колебаниях

изменяются по законам

X = A ω0 cos (ω0 t + α) ,

d 2 x

= −A ω0 sin (ω0 t + α) .

Из соотношений (6.6) и (6.4) получим

a = −ω 2 x ,

откуда следует, что при гармонических колебаниях ускорение прямо пропорционально смещению точки от положения равновесия и направлено противоположно смещению.

Из уравнений (6,6), (6,7) получим

+ ω0 x = 0 .

Уравнение (6.8) называется дифференциальным уравнением гармонических колебаний, а (6.4) является его решением. Подставив

(6.7) во второй закон Ньютона F = ma r , получим силу, под действием которой происходят гармонические колебания

Эта сила, прямо пропорциональная смещению точки от положения равновесия и направленная противоположно смещению, называется возвращающей силой, k называется коэффициентом возвращающей силы . Таким свойством обладает сила упругости . Силы другой физической природы, подчиняющиеся закону (6.11),

называются квазиупругими.

Колебания, происходящие под действием сил, обладающих

свойством

называются

собственными

(свободными

гармоническими) колебаниями.

Из соотношений (6.3),(6.10) получим круговую частоту и период

этих колебаний

T = 2 π

При гармонических колебаниях по закону (6.4) зависимости кинетической и потенциальной энергии от времени имеют вид

mA2 ω 0

cos 2 (ω t + α) ,

mA2 ω 0

sin 2 (ω t + α) .

Полная энергия в процессе гармонических колебаний сохраняется

EK + U = const .

Подставляя в (6.15) выражения (6.4) и (6.5) для x и v , получим

E = E K max = U max

mA2 ω 2

Примером классического

гармонического

осциллятора является легкая пружина, к которой

подвешен груз массой m

(рис.6.2). Коэффициент

возвращающей силы k называется коэффициентом

жесткости пружины.

Из второго закона Ньютона

для груза

на пружине

– kx получим

уравнение,

совпадающее

дифференциальным

уравнением

гармонических

колебаний (6.8) Следовательно, груз на пружине

при отсутствии сил сопротивления среды будет

совершать гармонические колебания (6.4).

Гармонические

колебания

представить в виде проекции на оси координат вектора, величина которого равна амплитуде A , вращающегося вокруг начала координат с угловой скоростью ω 0 . На этом представлении основан метод

векторных диаграмм сложения гармонических колебаний с

одинаковой частотой, происходящих по одной оси

x 1 = A 1 sin (ω t + ϕ 1 ) ,

x 2 = A 2 sin (ω t + ϕ 2 ) .

Амплитуда результирующего колебания определяется по

теореме косинусов

− 2 A A cos (ϕ −ϕ

Начальная фаза результирующего колебания ϕ

может быть

найдена из формулы

tg ϕ =

A 1 sin ϕ 1 + A 2 sin ϕ 2

A cosϕ + A cosϕ

При сложении однонаправленных колебаний с близкими

частотами ω 1 и ω 2

возникают биения , частота которых равна ω 1 − ω 2 .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях

x = A 1 sin ((ω t + ϕ 1 ) ) , (6.20) y = A 2 sin ω t + ϕ 2

имеет вид

− 2

cos (ϕ −ϕ

) = sin 2 (ϕ

−ϕ ) .

Если начальные фазы ϕ 1 = ϕ 2 , то уравнение траектории – прямая

x , или y = −

ϕ = ϕ1 − ϕ2 = π 2 ,

разность

точка движется по эллипсу

Физический маятник – это твердое тело,

способное

совершать

колебания

закрепленной оси, проходящей через точку

совпадающую

(рис.6.3). Колебания являются гармоническими

при малых углах отклонения.

Момент силы тяжести относительно оси,

проходящей

является

возвращающим

моментом

выражается

соотношением

M = mgd sin

ϕ ≈ mgd ϕ.

Основное уравнение динамики вращательного движения имеет вид (см. формулу (4.18))

M = I ε , (6.23)

где I - момент инерции маятника относительно оси, проходящей через точку О , ε - угловое ускорение.

Из (6.23), (6.22) получим дифференциальное уравнение гармонических колебаний физического маятника

d 2 ϕ

ϕ = 0 .

Его решения ϕ = ϕ 0 sin ω 0 t ,

mgd .

Из (6.3) получим формулу периода колебаний физического маятника

T = 2 π I .

M = − c ϕ .

Коэффициент возвращающего момента зависит от материала проволоки и ее размеров

где G - модуль сдвига, характеризующий упругие свойства материала, r - радиус проволоки, L - ее длина.

Основное уравнение динамики вращательного

движения имеетr вид

Его решение имеет вид ϕ = ϕ 0 sin (ω 0 t + α ) ,

где ϕ - угловое смещение от положения равновесия, ϕ 0 – амплитуда

колебаний.

Сравнив уравнения (6.8) и (6.32), получим значения угловой частоты и периода крутильных колебаний

T = 2 π

Свободные колебания становятся затухающими из-за наличия сил сопротивления. Например, когда материальная точка колеблется в вязкой среде, при малых скоростях на нее действует сила

сопротивления

r - коэффициент

среды F сопр = − rv

= −rx ,

сопротивления среды. Поэтому из второго закона Ньютона

mx = − kx − rx

получим дифференциальное уравнение затухающих колебаний

M x + m x = 0 .

Его решение для случая, когда

имеет вид

x = A e−β t

sin(ω t + α ) ,

Определение

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний .

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим ${\omega }_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2\ $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол ${\varphi }_0$. Через некоторый промежуток времени этот угол изменится на величину ${\omega }_0t$ и будет равен ${\omega }_0t+{\varphi }_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ - это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О - центра окружности), называется амплитудой колебаний.

Параметр ${\omega }_0$ - циклическая частота колебаний. $\varphi =({\omega }_0t+{\varphi }_0$) - фаза колебаний; ${\varphi }_0$ - начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

\[{\omega }_0=\frac{?\varphi }{\partial t}=\dot{\varphi }\left(2\right).\]

При ${\varphi }_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна ${\varphi }_0=\frac{\pi }{2}$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ - это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

\[{\omega }_0=\frac{2\pi }{T}\left(5\right).\]

Циклическую частоту с частотой $?$$?$ свяжем выражением:

\[{\omega }_0=2\pi \nu \ \left(6\right).\]

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Размерность циклической частоты:

\[{\dim \left({\omega }_0\right)=\frac{1}{t},\ }\]

где $t$ - время.

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник - идеальная модель) совершает гармонические колебания с круговой частотой равной:

\[{\omega }_0=\sqrt{\frac{k}{m}}\left(7\right),\]

$k$ - коэффициент упругости пружины; $m$ - масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(8\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

\[{\omega }_0=\sqrt{\frac{g}{l}}\left(9\right),\]

где $l$ - длина подвеса.

Угловая частота затухающих колебаний находится как:

\[\omega =\sqrt{{\omega }^2_0-{\delta }^2}\left(10\right),\]

где $\delta $ - коэффициент затухания; в случае с затуханием колебаний ${\omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна ${\dot{x}}_{max}=10\ \frac{см}{с}$, а ее максимальное ускорение ${\ddot{x}}_{max}=100\ \frac{см}{с^2}$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

\[{\dot{x}}_{max}=A{\omega }_0\to A=\frac{{\dot{x}}_{max}}{{\omega }_0};;\ {\ddot{x}}_{max}=A{щ_0}^2=\frac{{\dot{x}}_{max}}{щ_0}{щ_0}^2\to щ_0=\frac{{\ddot{x}}_{max}}{{\dot{x}}_{max}}.\]

Вычислим циклическую частоту:

\[щ_0=\frac{100}{10}=10(\frac{рад}{с}).\]

Ответ: $щ_0=10\frac{{\rm рад}}{{\rm с}}$

Пример 2

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(2.1\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $\frac{m}{2}$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

\[{\omega }_0=\sqrt{\frac{mg\frac{3}{4}l\ }{\frac{5}{8}ml^2}}=\sqrt{\frac{6g}{5l}}.\]

Ответ: ${\omega }_0=\sqrt{\frac{6g}{5l}}$

Является герц (русское обозначение: Гц ; международное: Hz ), названный в честь немецкого физика Генриха Герца .

Частота обратно пропорциональна периоду колебаний : ν = 1/T .

Частота 1 мГц (10 −3 Гц) 1 Гц (10 0 Гц) 1 кГц (10 3 Гц) 1 МГц (10 6 Гц) 1 ГГц (10 9 Гц) 1 ТГц (10 12 Гц)
Период 1 кс (10 3 с) 1 с (10 0 с) 1 мс (10 −3 с) 1 мкс (10 −6 с) 1 нс (10 −9 с) 1 пс (10 −12 с)

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

Видео по теме

Круговая частота

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей: ω = 360°ν .

Численно круговая частота равна числу колебаний (оборотов) за 2π секунд. Введение круговой частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная круговая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как циклическая резонансная частота ν L C = 1 / (2 π L C) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).} В то же время ряд других формул усложняется. Решающим соображением в пользу круговой частоты стало то, что множители 2 π {\displaystyle 2\pi } и 1 / 2 π {\displaystyle 1/2\pi } , появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении круговой (угловой) частоты.

В механике при рассмотрении вращательного движения аналогом круговой частоты служит угловая скорость .

Частота дискретных событий

Частота дискретных событий (например, частота следования импульсов) - физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий - секунда в минус первой степени (русское обозначение: с −1 ; международное: s −1 ). Частота 1 с −1 равна такой частоте дискретных событий, при которой за время 1 с происходит одно событие .

Частота вращения

Частота вращения - это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения - секунда в минус первой степени (с −1 , s −1 ), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

Единицы измерения

В системе СИ единицей измерения циклической частоты является герц (Гц, Hz). Единица была первоначально введена в 1930 году Международной электротехнической комиссией , а в 1960 году принята для общего употребления 11-й Генеральной конференцией по мерам и весам , как единица СИ. До этого в качестве единицы циклической частоты использовался цикл в секунду (1 цикл в секунду = 1 Гц ) и производные (килоцикл в секунду, мегацикл в секунду, киломегацикл в секунду, равные соответственно килогерцу, мегагерцу и гигагерцу).

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты следования импульсов - электронно-счётные и конденсаторные, для определения частот спектральных составляющих - резонансные и гетеродинные частотомеры, а также анализаторы спектра . Для воспроизведения частоты с заданной точностью используют различные меры - стандарты частоты (высокая точность), синтезаторы частот , генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу .

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 - находится во ВНИИФТРИ .
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 - находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени . Полученное количество делится на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

ν = 71 15 s ≈ 4.7 Hz {\displaystyle \nu ={\frac {71}{15\,{\mbox{s}}}}\approx 4.7\,{\mbox{Hz}}}

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени . Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 T m ) , или же относительной погрешности Δν /ν = 1/(2v T m ) , где T m - временной интервал, а ν - измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетов N мало.

Методы измерения

Стробоскопический метод

Использование специального прибора - стробоскопа - является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x ) не равна частоте строба (y ), но пропорциональна ей с целочисленным коэффициентом (2x , 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Близким к стробоскопическому методу является метод биений . Он основан на том, что при смешивании колебаний двух частот (опорной ν и измеряемой ν" 1 ) в нелинейной цепи в спектре колебаний появляется также разностная частота Δν = | νν" 1 |, называемая частотой биений (при линейном сложении колебаний эта частота является частотой огибающей суммарного колебания). Метод применим, когда более предпочтительным является измерение низкочастотных колебаний с частотой Δf . В радиотехнике этот метод также известен под названием гетеродинного метода измерения частоты. В частности, метод биений используется для точной настройки музыкальных инструментов. В этом случае звуковые колебания фиксированной частоты (например, от камертона), прослушиваемые одновременно со звуком настраиваемого инструмента, создают периодическое усиление и ослабление суммарного звучания. При точной настройке инструмента частота этих биений стремится к нулю.

Применение частотомера

Высокие частоты обычно измеряются при помощи частотомера . Это электронный прибор , который оценивает частоту определенного повторяющегося сигнала и отображает результат на цифровом дисплее или аналоговом индикаторе. Дискретные логические элементы цифрового частотомера позволяют учитывать количество периодов колебаний сигнала в пределах заданного промежутка времени, отсчитываемого по эталонным кварцевым часам . Периодические процессы, которые не являются по своей природе электрическими (такие, к примеру, как вращение оси , механические вибрации или звуковые волны), могут быть переведены в периодический электрический сигнал при помощи измерительного преобразователя и в таком виде поданы на вход частотомера. В настоящее время приборы этого типа способны охватывать диапазон вплоть до 100 Гц; этот показатель представляет собой практический потолок для методов прямого подсчёта. Более высокие частоты измеряются уже непрямыми методами.

Непрямые методы измерения

Вне пределов диапазона, доступного частотомерам, частоты электромагнитных сигналов нередко оцениваются опосредованно, с помощью гетеродинов (то есть частотных преобразователей). Опорный сигнал заранее известной частоты объединяется в нелинейном смесителе (таком, к примеру, как диод) с сигналом, частоту которого необходимо установить; в результате формируется гетеродинный сигнал, или - альтернативно - биения , порождаемые частотными различиями двух исходных сигналов. Если последние достаточно близки друг к другу по своим частотным характеристикам, то гетеродинный сигнал оказывается достаточно мал, чтобы его можно было измерить тем же частотомером. Соответственно, в результате этого процесса оценивается лишь отличие неизвестной частоты от опорной, каковую следует определять уже иными методами. Для охвата ещё более высоких частот могут быть задействованы несколько стадий смешивания. В настоящее время ведутся исследования, нацеленные на расширение этого метода в направлении инфракрасных и видимо-световых частот (т. н. оптическое гетеродинное детектирование).

Примеры

Электромагнитное излучение

Полный спектр электромагнитного излучения с выделенной видимой частью

Видимый свет представляет собой электромагнитные волны , состоящие из осциллирующих электрических и магнитных полей, перемещающихся в пространстве. Частота волны определяет её цвет: 4×10 14 Гц - красный цвет , 8×10 14 Гц - фиолетовый цвет ; между ними в диапазоне (4...8)×10 14 Гц лежат все остальные цвета радуги. Электромагнитные волны, имеющие частоту менее 4×10 14 Гц , невидимы для человеческого глаза, такие волны называются инфракрасным (ИК) излучением . Ниже по спектру лежит микроволновое излучение и радиоволны . Свет с частотой выше, чем 8×10 14 Гц , также невидим для человеческого глаза; такие электромагнитные волны называются ультрафиолетовым (УФ) излучением . При увеличении частоты электромагнитная волна переходит в область спектра, где расположено рентгеновское излучение , а при ещё более высоких частотах - в область гамма-излучения .

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света .

Другой характеристикой электромагнитных волн является длина волны . Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

λ = c / ν , {\displaystyle \lambda =c/\nu ,}

где с - скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c ′ отличается от скорости света в вакууме (c ′ = c/n , где n - показатель преломления), связь между длиной волны и частотой будет следующей:

λ = c n ν . {\displaystyle \lambda ={\frac {c}{n\nu }}.}

Ещё одна часто использующаяся характеристика волны - волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ . Иногда эта величина используется с коэффициентом 2π , по аналогии с циклической и круговой частотой k s = 2π/λ . В случае электромагнитной волны в среде

k = 1 / λ = n ν c . {\displaystyle k=1/\lambda ={\frac {n\nu }{c}}.} k s = 2 π / λ = 2 π n ν c = n ω c . {\displaystyle k_{s}=2\pi /\lambda ={\frac {2\pi n\nu }{c}}={\frac {n\omega }{c}}.}

Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц до 20 кГц (с возрастом верхняя граница частоты слышимого звука снижается). Звук с частотой более низкой, чем 20 Гц (соответствует ноте ми

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Вверх