Резонанс напряжений в электрической цепи и его последствия. Резонансные режимы работы электрических цепей Что такое резонанс напряжения

Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.

В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Однако полная аналогия - равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) - возможна не во всех случаях.

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление. Такое состояние цепи имеет место при определенном соотношении ее параметров r, L, С , когда резонансная частота цепи равна частоте приложенного к ней напряжения.

Резонанс вэлектрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.

При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных ее участках. В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,- резонанс токов.

Рассмотрим явление резонанса напряжений на примере цепи рис. 2.11, а .

Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т. е. угол φ = 0. и полное сопротивление цепи равно ее активному сопротивлению.

z = r 2 + (x L - x С ) 2 = r.

Это равенство, очевидно, будет иметь место, если x L = х С, т. е. реактивное сопротивление цепи равно нулю:

x = x L - x С = 0.

Выразив x L и x С соответственно через L , С и f , получим

Рис. 2.14. Векторная диаграмма (а ) и графики мгновенных значений и, i, р (б ) цепи рис. 2.11, а при резонансе напряжений

вытекает, что ток в цепи при резонансе равен напряжению, деленному на активное сопротивление:



I = U/r.

Ток в цепи может оказаться значительно больше тока, который был бы при отсутствии резонанса. При резонансе напряжение на индуктивности равно напряжению на емкости:

Ix L = Ix С = U L = U C .

При больших значениях x L и х C относительно r эти напряжения могут во много раз превышать напряжение сети. Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений.

Напряжение на активном сопротивлении при резонансе равно напряжению, приложенному к цепи:

U r = Ir = U.

На рис. 2.14, а изображена векторная диаграмма цепи рис. 2.11, а при резонансе напряжений Диаграмма подтверждает тот факт, что ток совпадает по фазе с напряжением сети и что напряжение на активном сопротивлении равно напряжению сети. Реактивная мощность при резонансе равна нулю:

Q = Q L - Q C = U L I - U C I = 0.

так как U L = U C .

Полная мощность равна активной мощности;

S = P 2 + Q 2 = P,

так как реактивная мощность равна нулю. Коэффициент мощности равен единице:

cos φ = P/S = r /z = 1.

Поскольку резонанс напряжений возникает, когда индуктивное сопротивление последовательной цепи равно емкостному, а их значения определяются соответственно индуктивностью, емкостью цепи и частотой сети,

x L = fL, x С = .

Резонанс может быть получен или путем подбора параметров цепи при заданной частоте сети, или путем подбора частоты сети при заданных параметрах цепи.

На рис. 2.14, б изображены графики мгновенных значений тока i , напряжения и сети и напряжений и L , и C , и r на отдельных участках, а также активной р = iu r и реактивной p L = iи L ,
p С = iи С
мощностей за период для цепи рис. 2.11. а при резонансе напряжений. С помощью этих графиков можно проследить энергетическне процессы, происходящие в цепи при резонансе напряжений.

Активная мощность р все время положительна, она поступает из сети к активному сопротивлению и выделяется в нем в виде тепла. Мощности p L и р С знакопеременные, и, как видно из графика, их средние значения равны нулю.

В момент времени t = 0 (точка I на рис. 2.14, б ) ток в цепи i = 0 и энергия магнитного поля
W L =
0. Напряжение на емкости равно амплитудному значению U тС, конденсатор заряжен и энергия его электрического поля

W C = U 2 тc С .

В первую четверть периода, в интервале времени между точками 1 и 2, напряжение на емкости и, следовательно, энергия электрического поля убывают. Ток в цепи и энергия магнитного поля возрастают.

В конце первой четверти периода (точка 2 ) и С = 0, W С = 0. i = I m , W L = I 2 m L/ 2.

Таким образом, в первую четверть периода энергия электрического поля переходит в энергию магнитного поля.

Так как площади p С (t ) и p L (t ) , выражающие запас энергии соответственно в электрическом и магнитном полях, одинаковы, вся энергия электрического поля конденсатора переходит в энергию магнитного поля индуктивности. Во вторую четверть периода, в интервале между точками 2 и 3 , энергия магнитного поля переходит в энергию электрического поля.

Рис. 2.15. Графики зависимости I, r, х C , х L , U r , U L , U C от частоты цепи, изображенной на рис 2.11, а

Аналогичные процессы происходят и в последующие четверти периода.

Таким образом, при резонансе реактивная энергия циркулирует внутри контура от индуктивности к емкости и обратно. Обмена реактивной энергией между источниками и цепью не происходит. Ток в проводниках, соединяющих источник с цепью, обусловлен только активной мощностью.

Для анализа цепей иногда используют частотный метод, позволяющий выяснить зависимость параметров цепи и других величин oт частоты.

На рис 2.15 изображены графики зависимости U r , U C , U L , I, х C , х L , от частоты при неизменном напряжении сети.

При f = 0 сопротивления x L = fL = 0,
х C = 1/ fC = ∞, ток I = 0, напряжения U r = I r = 0,
U L = Ix L =
0, U C = U.
При f = f pез х L = х C , I = U/r, U L = U C , U r = U. При f → ∞ x L →∞, х C → 0, U r → 0, U C → 0, U L U .

В интервале частот от f = 0 до f = f pез нагрузка имеет активно-емкостный характер, ток опережает по фазе напряжение сети. В интервале частот f = f pез до f → ∞ нагрузка носит активно-индуктивный характер, ток отстает по фазе от напряжения сети.

Наибольшее значение напряжения на емкости получается при частоте, несколько меньшей резонансной, на индуктивности - при частоте, несколько большей резонансной.

Явления резонанса широко используются в радиоэлектронных устройствах и в заводских промышленных установках.

Пример 2.4. Определить частоту сети, при которой в цепи рис. 2.11, а возникает резонанс напряжений. Определить также, во сколько раз напряжение на индуктивности больше напряжения сети при резонансе, если цепь имеет следующие параметры:

r = 20 Ом, L = 0,1 Гн, С = 5 мкф.

Решение. Резонансная частота

Напряжение на индуктивности при резонансе в 7 раз больше напряжения сети.

Резонанс в электрической цепи.
Резонанс в электрической цепи - явление резкого возраста­ния амплитуды вынужденных колебаний тока при приближении частоты внешнего напряжения (эдс) и собственной частоты колебательного кон­тура.
Из выражения для полного сопротивления переменному току видим, что сопротивление будет минимальным (сила тока при заданном напряжении – максимальной) при условии или .
Следовательно, - т.е. частота изменения внешнего напряжения равна собственной частоте колебаний в контуре.
Амплитуды колебаний напряжения на индуктивности и емкости будут равны и - т.е. они равны по величине и противоположны по фазе (напряжение на индуктивности опережает по фазе напряжение на емкости на p).
Следовательно, .
Полное падение напряжения в контуре равно падению напряжения на активном сопротивлении. Амплитуда установившихся колебаний тока будет опреде­ляться уравнением . В этом и состоит смысл явления резонанса.
При этом если величина , то напряжения на емкостной и индуктивной нагрузках могут оказаться много больше внешнего напряжения (эдс генератора)!
На рисунке представлена зависимость тока в колеба­тельном контуре от частоты при значениях R, гдеR 1
В параллельном контуре при малых активных сопротивлениях R 1 и R 2 токи в параллельных ветвях противоположны по фазе. Тогда, согласно правилу Кирхгофа .
В случае резонанса . Резкое уменьшение амплитуды силы тока во внешней цепи, питающей параллельно соединенные емкостное и индуктивное сопротивления при приближении частоты внешнего напряжения к собственной частоте колебательного контура наз. резонансом токов.
Применение: одно из основных применений резонанса в электрической цепи – настройка радио и телевизионных приемников на частоту передающей станции. Необходимо учитывать резонансные явления, когда в цепи, не рассчитанной на работу в условиях резонанса, возникают чрезмерно большие токи или напряжения (расплавление проводов, пробой изоляции и т.д.).

44.45.Вихревое электрическое поле. Первое уравнение Максвелла. Применение и наблюдение вихревых полей.

Как мы знаем из закона электромагнитной индукции Фарадея, в замкнутом контуре индуцируется ЭДС при изменении магнитного потока, пронизывающего этот контур

Если контур (проводник) движется, то причиной возникновения ЭДС может быть сила Лоренца. Если же контур неподвижен, то и в этом случае, как показывает опыт, в нём возникает ЭДС, определяемая уравнением (3.93). Какова же в этом случае причина возникновения ЭДС? Под действием ЭДС в контуре возникает электрический ток. Это значит, что на электроны проводника действует электрическое поле. Если контур жёсткий, то можно записать

. (3.94)

(Мы поставили знак частной производной, поскольку магнитная индукция может зависеть и от координаты и от времени.) Из 14.2 следует, что циркуляция этого поля по замкнутому контуру не равна нулю, в отличие от электростатического поля. Максвелл предположил, что изменяющееся во времени магнитное поле порождаетвихревое электрическое поле, независимо от того, имеется у нас проводящий контур или нет. Просто если он есть, то позволяет зарегистрировать вихревое электрическое поле Е В .

Левую часть уравнения (3.94) можно преобразовать по формуле Стокса . Тогда, вместо уравнения (3.94), получим

. (3.95)

Поскольку интегрирование может производиться по любой поверхности, опирающейся на контур L , то в каждой точке этой поверхности должны равняться подынтегральные выражения

. (3.96)

Поле Е В существенно отличается от электростатического поля, для которого, как мы помним, циркуляция по замкнутому контуру равна нулю: , а значит, в соответствии с теоремой Стокса, и ротор этого поля в любой точке равен нулю:

В общем случае

но для ротора суммарного поля, в силу уравнения (3.97), остаётся справедливым соотношение (3.96). Таким образом,

. (3.99)

Поскольку переменное магнитное поле порождает электрическое, как это следует из закона индукции Фарадея и полученной нами из этого закона формулы (3.99), то должно существовать и обратное явление – переменное электрическое поле должно порождать магнитное поле. Для установления количественных соотношений рассмотрим процесс заряда конденсатора.

Рисунок 3.21

Для начала определим поле вблизи поверхности металлической обкладки конденсатора. Применим терему Гаусса для вектора электрического смещения к одной из обкладок (рис. 3.21). Внутри металла поле равно нулю, а снаружи направлено перпендикулярно поверхности. Следовательно, поток через весь цилиндр сведётся к потоку через верхнее основание цилиндра площадью dS. И этот поток должен равняться заряду, заключённому внутри нашего цилиндра, или DdS=sdS , или

D=s . (3.100)

Здесь s – поверхностная плотность зарядов на обкладке конденсатора.

Как мы уже говорили, Максвелл предположил, что изменяющееся электрическое поле создаёт магнитное поле. Но мы знаем, что постоянное магнитное поле создаётся токами. Поэтому естественно предположение, что должен быть ещё один ток, который Максвелл назвал током смещения и который ответственен за создание магнитного поля. Для установления вида этого тока смещения, рассмотрим соотношение (3.100) справа налево, а именно

s =D. (3.101)

Умножим обе части на площадь пластины S и получим

q =sS= DS. (3.102)

Здесь q – заряд пластины конденсатора. Во время заряда конденсатора ток в подводящем проводе

. (3.103)

Разделив обе части последнего уравнения на площадь пластины S, получим слева ток проводимости j=I/S , а справа – плотность нового, максвелловского тока, или плотность тока смещения. Таким образом,

В последнем уравнении мы поставили значки векторов – для общего случая и написали частную производную, поскольку в общем случае вектор электрического смещения может зависеть и от координаты.

Проанализировав полученные результаты, Максвелл ввёл понятие общего тока как суммы токов проводимости и тока смещения. Здесь подчеркнём, что ток смещения – это просто название изменяющегося во времени электрического поля. Единственная функция тока смещения – создавать магнитное поле. Тогда обобщенный закон полного тока будет иметь вид

, (3.105)

или окончательно

. (3.106)

Максвелл создал замкнутую макроскопическую теорию электромагнитного поля. В основе этой теории лежат его знаменитые уравнения. Первая пара связывает основные характеристики электрического и магнитного полей

; (3.107)

В уравнении (3.107) под полем E надо понимать полное поле – поле, созданное неподвижными зарядами, и поле, созданное изменяющимся магнитным полем. Уравнение (3.108) отражает тот факт, что в природе нет магнитных зарядов.

Вторая пара уравнений Максвелла связывает вспомогательные характеристики электрического и магнитного полей

; (3.109)

Уравнение (3.109) является следствием того, что магнитное поле создаётся как токами проводимости, так и токами смещения (изменяющимся во времени электрическим полем). И уравнение (3.110) говорит нам, что источниками электрического поля (помимо изменяющегося магнитного поля) являются электрические заряды. Уравнения Максвелла (3.107)…(3.110) называются уравнениями Максвелла в интегральной форме.

Уравнения Максвелла дополняются так называемыми материальными уравнениями, которые устанавливают связь между вспомогательными и основными характеристиками полей. Для однородной и изотропной неферромагнитной среды эти уравнения имеют вид

Уравнения Максвелла не симметричны относительно электрического и магнитного полей, поскольку в природе нет магнитных зарядов.

Уравнения Максвелла позволили предсказать существование электромагнитных волн – распространяющихся в пространстве со скоростью света переменных электрического и магнитного полей. Вскоре электромагнитные волны были обнаружены немецким физиком Г.Герцем. Оказалось, что их свойства полностью описываются уравнениями Максвелла. Это также позволило Максвеллу создать электромагнитную теорию света – как электромагнитных волн с длиной волны .

Если применить к уравнениям (3.107)…(3.110) теоремы Гаусса и Стокса, то получим уравнения Максвелла в дифференциальной форме:

; (3.112)

; (3.114)

Уравнения (3.98)…(3.101) связывают локальные характеристики поля в каждой точке.

46.Система уравнений Максвелла.

Резонанс токов

Резонанс токов возникает в цепи с параллельным включением элементов (рис.5.1). Такая цепь содержит два сложных потенциальных узла, а все элементы находятся под одним и тем же напряжением

Для любого из узлов - 1 или 1’ справедлив первый закон Кирхгофа:

Применяя к (5.2) выражения (1.7) и (1.12) приведем его к виду

(5.3)

Подставим в (5.3) вместо u(t) его значение из (5.1) и решим его

Векторная диаграмма, построенная по (5.4) приведена на рис. 5.2. В качестве исходного в ней принят общий для всех элементов цепи вектор напряжения . С этим вектором совпадает по направлению вектор тока через резистор. Его величина равна

Вектор тока через индуктивность отстает от вектора напряжения, а вектор тока через емкость опережает его на 90 о. Проведем последовательное сложение векторов . Результатом сложения является вектор Он сдвинут по фазе относительно вектора на угол j . Разность векторов дает вектор реактивного тока . Его величина

. (5.5)

Векторы и образуют треугольник токов. Для этого треугольника справедливы выражения

. (5.7)

Треугольник токов наглядно показывает, что для достижения резонанса в цепи необходимо обеспечить равенства противофазных токов и . Тогда результирующий реактивный ток цепи и угол j будут равны нулю, а сопротивление цепи станет активным. Из выражения (5.5) видно что может быть равно нулю при соблюдении условия

Отсюда легко определить:

Частоту , на которой наступает резонанс (резонансную частоту) при заданных значениях элементов L и С

Значение одного из элементов L или С, если заданы резонансная частота и другой элемент

Определим значение тока всей цепи и токов, протекающих в ее ветвях в режиме резонанса.

Действующее значение тока всей цепи на частоте легко найти по (5.6)

Но это значение равно току, протекающему через активное сопротивление цепи т.е.

Ток, протекающий через элемент L определим по закону Ома

. (5.13)

Подставляя в (5.13) вместо U его значение из (5.11) получим

Аналогично определяем выражение для тока через элемент

Принимая во внимание (5.8) нетрудно сделать вывод о том, что токи протекающие через индуктивный и емкостной элементы равны по величине, но противоположны по фазе. Величина Q равная

(5.16)

может быть больше единицы, в специальных устройствах достигает несколько десятков и сотен единиц и называется добротностью.

Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи. Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны. Именно это указывает на то, что в цепи происходит колебательный процесс с частотой по передаче электрической энергии конденсатора в магнитную энергию индуктивности и наоборот. Энергия источника на этот процесс не затрачивается (при идеальных L и С). Она расходуется только на преодоление сопротивления резистора R. Поэтому цепь рис.5.1. называют параллельным колебательным контуром.

Чтобы завершить анализ цепи рассмотрим зависимость ее токов и напряжения от частоты (рис.5.4). Ток, протекающий через элемент R - i R



определяется законом Ома и не зависит от частоты. Ток через емкость i c согласно (5.15) прямопропорционален частоте, а ток через индуктивность i L -обратнопропорционален. На частоте они равны по величине, но противоположны по направлению. Общий ток цепи определяется суммой трех токов. Поэтому он имеет большое значение на частотах, дальних от резонансной, но принимает значение i R на резонансной частоте. Физически это означает что на резонансной частоте проводимость цепи минимальна (она равна проводимости только элемента R). Поэтому падение напряжения между узлами 1-1’ максимально на частоте и имеет вид резонансной огибающей. В силу этих качеств параллельный колебательный контур широко применяют в радио и радиотехнических устройствах для выделения сигналов на заданной частоте.

Резонанс напряжений

Резонанс напряжений возникает в цепи с последовательным включением элементов (рис.5.5).


Известно, что комплексное сопротивление токов цепи определяется выражением

.

По определению резонанс в цепи рис.5.5 наступает, когда выполнится условие

Отсюда видно, что резонанс в цепи возникает на частоте

Очевидно также, что

Видим, что полученные выражения полностью соответствуют (5.9) и (5.10). Это подтверждает единство физической сути различных видов резонанса.

Определим ток и напряжение всей цепи, а также падение напряжения на ее отдельных элементах в режиме резонанса.

Так как сопротивление всей цепи в режиме резонанса минимально и равно R то ток в ней максимален и равен

а падение напряжения определяется ЭДС источника - Е.

Падение напряжения на отдельных элементах легко найти по закону Ома. Так, падение напряжения на резисторе R равно

. (5.18)

Тривиальный математически результат интересен по физической сути. Все напряжение источника выделяется на одном элементе цепи.

Падение напряжения на индуктивности равно

. (5.19)

Величина

называется добротностью и может принимать значение десятков и сотен единиц. Значит, падение напряжения на индуктивности может в десятки и сотни раз превышать ЭДС источника.

Падение напряжения на емкости равно

Так как , то падение напряжения на емкости равно по величине падению напряжения на индуктивности, но согласно (5.8) они противоположны по знаку. Отношение напряжения на индуктивности или на емкости в режиме резонанса к току в этом режиме называют характеристическим сопротивлением , причем

. (5.22)

§ 59. Понятие о резонансе напряжений

В цепи переменного тока с активным, индуктивным и емкостным сопротивлениями, соединенными последовательно (рис. 62, а), может возникнуть резонанс напряжений.

При резонансе напряжения на зажимах индуктивного и емкостного сопротивлений могут стать значительно больше, чем напряжение на зажимах цепи.
Резонанс напряжений наступает в том случае, если индуктивное сопротивление X L и емкостное сопротивление X c равны между собой, т. е.

Допустим, что подбором индуктивиости и емкости или изменением частоты создано условие, при котором X L = X c Когда цепь не настроена в резонанс, то ее полное сопротивление

а в рассматриваемой цепи при резонансе (когда X L = X c ) ее полное сопротивление

Таким образом, полное сопротивление цепи при резонансе оказывается равным активному сопротивлению.
Уменьшение полного сопротивления цепи приводит к тому, что сила тока в ней возрастает. Напряжение генератора переменного тока, включенного в цепь, расходуется на активном сопротивлении

U a = I r .

Напряжение на индуктивности определяется, согласно закону Ома, произведением силы тока на величину индуктивного сопротивления. Так как в цепи увеличилась сила тока, то напряжение U L = I X L возросло.
Напряжение на емкости также определяется произведением тока на величину емкостного сопротивления. Поэтому напряжение на емкости U c = I X c .
В связи с тем, что в последовательно соединенных сопротивлениях протекает одинаковый ток и при резонансе индуктивное сопротивление X L равно емкостному сопротивлению Х с , напряжение на индуктивности и напряжение на емкости равны:

U L = U c или I X L = I X c

Если одновременно увеличить оба реактивных сопротивления Х L и Х c , не нарушая при этом условия резонанса Х L = Х c , то соответственно возрастут оба частичных напряжения U L и X c , а сила тока в цепи при этом не изменится. Таким путем можно получить U L и U c во много раз большие, чем напряжение U на зажимах цепи.
Построим векторную диаграмму (рис. 62, б) для рассматриваемой цепи при резонансе напряжения. Отложим по горизонтали в выбранном масштабе вектор тока . В активном сопротивлении ток и напряжение совпадают по фазе. Поэтому вектор напряжения отложим по вектору тока. Так как напряжение на индуктивности опережает ток на 90°, то вектор отложим вверх под углом 90°.
Напряжение на емкости отстает от тока на 90°, поэтому вектор , равный вектору , отложим вниз под углом 90° к вектору тока. На векторной диаграмме видно, что напряжение на индуктивности и напряжение на емкости равны и сдвинуты по фазе друг относительно друга на 180° и взаимно компенсируются.
Угол сдвига фаз между током и напряжением при резонансе равен нулю. Это значит, что ток и напряжение совпадают по фазе (как в цепи с активным сопротивлением).

Пример. В цепь переменного тока включены последовательно активное сопротивление r = 5 ом , индуктивность L = 0,005 гн и емкость 63,5 мкф . Генератор, включенный в цепь, вырабатывает переменное напряжение U = 2,5 в с резонансной частотой f = 285 гц . Определить индуктивное и емкостное сопротивления, полное сопротивление цепи, ток, протекающий в цепи, напряжение на емкости и на индуктивности.
Решение . Индуктивное сопротивление

Резонансом напряжений называется режим электрической цепи синусоидального тока с последовательным соединенением резистивного R, индуктивноо L и емкостного С элементов , при котором угол сдвига фаз между общим напряжением (напряжением сети ) и током в цепи равен нулю .

Условием наступления резонанса напряженийявляется равенство индуктивного и емкостного сопротивлений цепи :

X L = X C . (3.27)

Электрическая цепь, питаемая синусоидальным переменным током, в которую входит конденсатор и катушка индуктивности называется колебательным контуром .

Резонанс напряжений можно получить тремя способами:

1. Изменением частоты w синусоидального тока;

2. Изменением величин индуктивности или емкости колебательного контура, при котором меняются индуктивное X L или емкостное X C сопротивление;

3. При одновременном изменении параметров w, L , C цепи колебательного контура.

Из условия резонанса напряжения (3.27) следует, что так как

X L = wL и X C = 1/wC ,

то при резонансе напряжений

где w рез, рад/сек – резонансная частота.

Резонанс напряжений характеризуется рядом существенных особенностей :

1. Так как при резонансе напряжений угол сдвига фаз между напряжением и током равен нулю (j = y u – y i = 0), то коэффициент мощности при резонансе принимает наибольшее значение, равноеединице :

cos j = cos 0° = 1. (3.29)

В этом случае, как видно из векторной диаграммы на рис. 3.22,а, вектор тока и вектор общего напряжения совпадают по направлению, так как они имеют равные начальные фазы y u = y i .

2. При резонансе напряжений векторы напряжения на индуктивном и емкостном элементах оказываются равными по величине и противоположными по фазе :

U L рез = U C рез (3.30)

так как X L I = X C I , а в комплексной форме (см. рис. 3.22,а).

3. Напряжение на активном сопротивлении при резонансе напряжений оказывается равным напряжению сети (рис. 4.22,а) так как

. (3.31)

В комплексной форме .

4. Отношение индуктивного или емкостного сопротивлений к активному сопротивлению цепи с R,L,C -элементами при резонансе называется добротностью колебательного контура Q

. (3.32)

Умножив числитель и знаменатель этих дробей на ток I , получим выражения для добротности колебательного контура через отношения напряжений

. (3.33)

При больших значениях индуктивного X L и емкостного X C сопротивлений и малых значениях активного сопротивления R цепи (R << X L = X C ), т.е. при высоких значениях добротности Q колебательного контура напряжения
U L рез = U C рез >> U :

U L рез /U = X L рез /R = Q >> 1; U C рез /U = X C рез /R = Q >> 1, (3.34)

то есть напряжение на индуктивности и конденсаторе последовательного колебательного контура при его высокой добротности в режиме резонанса напряжений могут во много раз превысить напряжение питания .

Например, если у колебательного контура последовательной цепи с
R,L,C -элементами, питаемым синусоидальным напряжением U = 220 В, R = 1 Ом, X L рез = X C рез = 1000 Ом, то напряжение на индуктивности и конденсаторе, как следует из (3.34) равно:

U L рез = U C рез = U·Q =220·1000 = 220000 В = 220 кВ.

Поэтому при работе электротехнического оборудования, питаемого сетевым напряжением 220/380 вольт резонанс напряжений никогда не используется .

Однако в разнообразных устройствах радиотехники и электроники, где напряжение питания колебательного контура составляет микровольты
(1мкВ = 10 -6 В), резонанс напряжений широко используется, позволяя многократно усилить входной сигнал в виде синусоидального напряжения.

Рис. 3.22. Резонанс напряжений в цепи с последовательным соединением R,L,C-элементов

а) – векторная диаграмма ; б) – вырожденный треугольник сопротивлений (Х = 0);

в) – вырожденный треугольник мощностей (Q = 0)

5. Так как при резонансе напряжений X L = X C (3.27), то полное сопротивление цепи принимает минимальное значение , равное активному сопротивлению :

а общее реактивное сопротивление цепи становится равным нулю :

X рез = |X L X C | = 0. (3.36)

Поэтому треугольник сопротивлений при резонансе напряжений имеет вырожденный характер , как показано на рис. 3.22,б.

6. На основании закона Ома и из формулы (3.35) следует, что ток I в цепи при резонансе напряжений достигает наибольшего значения :

I рез = U /Z рез = U /R . (3.37)

Отсюда следует, что ток в цепи при резонансе напряжений может оказаться значительно больше тока, который мог бы быть при отсутствии резонанса .

Это свойство позволяет обнаружить резонанс напряжений при изменении частоты w, изменении индуктивности L или емкости С . Однако резонансный ток при определенных условиях опасен – он может, достигнув чрезмерно большой величины, привести к перегреву элементов цепи и выходу их из строя.

7. Активная мощность при резонансе напряжений имеет наибольшее значение , так как связана с квадратом тока

P = (I рез) 2 R , (3.38)

а ток I рез – максимален.

8. Общая реактивная мощность Q при резонансе напряжений равна нулю :

Q Q L Q C ½ = ½U L I U C I ½ = 0, (3.39)

так как U L = U C . Поэтому треугольник мощностей при резонансе имеет вырожденный характер , как показано на рис. 3.22,в.

9. При условии R << X L = X C (т.е. при высокой добротности колебательного контура) реактивнаяиндуктивная и емкостная мощности

Q L = Q C >> S = P , (3.40)

то есть эти мощности могут во много раз превысить потребляемую полную мощность S . При этом полная мощность S при резонансе целиком выделяется на резистивном элементе R , в виде активной мощности Р .

Физически это объясняется тем, что при резонансе напряжений происходит периодический обмен энергии магнитного поля в индуктивном элементе и энергии электрического поля в конденсаторе. При этом интенсивность этого обмена, как величины реактивных мощностей Q L и Q C , в сравнении с потребляемой активной мощностью Р

Q L /P = X L /R = Q ; Q C /P = X C /R = Q (3.41)

определяется соотношениями реактивных и активного сопротивления цепи, как и для напряжений U L , U C и U , то есть добротностью Q колебательного контура цепи (см. п.4).

Кривые, выражающие зависимость полного тока I , сопротивления цепи Z , напряжения на индуктивности U L и конденсаторе U С , коэффициента мощности cos j от емкости батареи конденсатора С , называются резонансными кривыми .

На рис. 3.23 приведены резонансные кривые (U L , U С , I , Z , cos j) = f (C ), построенные в общем виде при U = const и w = 2pf = const .

Рис. 3.23. Резонансные кривые U L , U С , I , Z , cos j в зависимости от емкости С
при последовательном соединении катушки индуктивности и батареи конденсаторов

Анализ этих зависимостей показывает, что при увеличении емкости С батареи конденсаторов полное сопротивление цепи Z сначала уменьшается, достигает минимума в режиме резонанса и становится равным активному сопротивлению R , а затем снова возрастает с увеличением емкости. Соответственно изменению Z меняется полный ток цепи (по закону Ома I обратно пропорционален Z ): с ростом емкости конденсаторов ток I вначале увеличивается, достигает максимума в режиме резонанса, а затем вновь уменьшается.

Коэффициент мощности cos j изменяется с изменением емкости С в том же порядке: сначала с увеличением емкости С коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Напряжения на индуктивности и конденсаторах имеют максимумы вблизи режима резонанса и становятся равными друг другу в этом режиме. Следует отметить, что достигаемые величины напряжений на конденсаторах и катушке индуктивности в режиме резонанса напряжений и вблизи него могут во много раз превышать входное напряжение приложенное ко всей цепи (см. п. 4).

С точки зрения электробезопасности и безаварийного режима работы, это следует учитывать при проведении исследования резонанса напряжения на стенде, задавая величину напряжения питания цепи U в достаточно низких пределах (U = 20 ¸ 25 В).

Таким образом, резонансные кривые позволяют установить минимальное полное сопротивление и наибольший ток в цепи при максимуме коэффициента мощности, равном единице, когда в цепи с последовательным соединением катушки индуктивности и батареи конденсаторов возникает резонанс напряжений.

Выводы :

1. Резонанс напряжений в промышленных электротехнических установках , питаемых синусоидальным сетевым напряжением 220/380 В – нежелательное и опасное явление , так как может вызвать аварийную ситуацию при возможном перенапряжении на отдельных участках цепи, привести к пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов и опасно для обслуживающего персонала.

2. В то же время, резонанс напряжений широко используется в радиотехнике, в автоматике и электронике для настройки колебательных контуров в резонанс на определенную частоту, а также в различного рода приборах и устройствах, основанных на резонансном явлении.

Лабораторная работа 2б делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса напряжений в цепи с последовательным соединением R,L,C -элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся , в отличие от работ на старых стендах (см. в – Работа 2б, п.2. Электромонтажная часть).

1. Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы , относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями .

В результате предварительного оформления лабораторной работы №2б в рабочей тетради или журнале (на листах формата А4 с компьютерной распечаткой) студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров исследуемой цепи однофазного тока с последовательным соединением электроприемников при резонансе напряжений проводятся с помощью принципиальной схемы (рис. 3.24). Данная схема соответствует панели модернизированног стенда ЭВ-4 с аналогичной мнемосхемой и цифровыми измерительными приборами (см. фото на рис. 3.26).

Для более заметного вида резонансных кривых в последовательной цепи электроприемников резистор R отсутствует (на принципиальной схеме рис. 3.23 он зашунтирован).

Этой схеме соответствует схема замещения с последовательно соединенными , показанная на рис. 3.25.

3.24 Принципиальная схема цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов

3.25 Схема замещения цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.26) перевести все выключатели (S 1 ÷ S 6 , S" 1 ÷ S" 6), расположенные на этой панели, в нижнее положение (состояние – «откл»).

Рис. 3.26. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для проведения лабораторой работы 2б «Резонанс напряжений
в однофазной цепи с активно-реактивными элементами»

2. На панели стенда из последовательной цепи R,L,C -элементов исключить резистор R , зашунтировав его с помощью электромонтажного провода (красный провод-шунт на принципиальной схеме рис. 3.24) вставив его концы в гнезда по бокам вольтметра V R .

3. Установить начальную общую емкость конденсаторов С = 40 мкФ нажатием соответствующих черных кнопок выключателей рядом с подключаемыми конденсаторами на панели №4 стенда с мнемосхемой батареи конденсаторов (см. рис. 3.28).

4. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.27) к сетевому напряжению (~220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора , тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.27. Панель блока питания лабораторного стенда

Рис. 3.28. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности

5. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки всех выключателей (S 1 ÷ S 6 , S" 1 ÷ S" 6) в положение «вкл». При этом должны засветиться зеленые цифры на электроизмерительных приборах.

6. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.27) установить напряжение U на входе цепи порядка 20 ÷ 25 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.26). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

7. В процессе исследования цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов провести 9 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.5) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.28), постепенно увеличивая емкость с 40 мкФ до 200 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S 1 , S" 1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

8. Во всех опытах измерить входное напряжение U , потребляемую активную мощность Р и протекающий по цепи ток I , соответственно цифровыми измерительными приборами: вольтметром V , ваттметром W и амперметром А (см. принципиальную схему на рис. 3.24 и панель стенда на рис. 3.26).

9. Напряжение на батарее конденсаторов U С и напряжение на катушке индуктивности U К с параметрами R K , L K измерить цифровыми вольтметрами, соответственно V C и V K , установленными на панели стенда (см. рис. 3.26).

10. Полученные результаты измерений каждого опыта занести в таблицу 3.5.

11. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S 1 и S 1 " на панели с мнемосхемой (рис. 3.26) и красной кнопки «выкл» выключателя на панели блока питания (рис. 3.27). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

Резонанс напряжений происходит в электрической цепи, включающей в себя несколько элементов: источник электроэнергии, катушку индуктивности и конденсатор. Перечисленные элементы соединяются последовательно. При этом источник напряжения имеет такую частоту, которая совпадает с внутренним контуром. Это часто применяется в полосовых фильтрах.

Катушка индуктивности и последовательно включенный в цепь конденсатор вместе особенным образом воздействуют на генератор, от которого запитана цепь. Также они влияют на фазовые соотношения напряжения и тока:

  1. Первый элемент сдвигает фазу, при этом напряжение начинает обгонять ток примерно на четверть периода.
  2. Второй элемент действует иначе. Он заставляет ток обгонять напряжение также на одну четвертую часть периода фазы.

Индуктивное сопротивление действует на смещение фаз, из-за чего его можно считать противоположным работе емкостного сопротивления. В результате итоговый сдвиг фаз между напряжением и током в цепи зависит от суммарного действия индуктивного и емкостного сопротивлений, а также соотношения между ними. От этого тоже зависит характер цепи.

Если одноимённая величина превосходит противоположную, то систему можно считать емкостной, ведь ток превосходит по фазе. При иной ситуации характер цепи считается индуктивным, ведь напряжение доминирует.

Общее реактивное сопротивление определить просто. Необходимо сложить два показателя сопротивления:

  1. Индуктивное от катушки.
  2. Емкостное от конденсатора.

Из-за того, что они оказывают противоположное воздействие, одному из них присваивается отрицательный знак (обычно ёмкостному сопротивлению конденсатора). Тогда общее реактивное сопротивление можно найти так: из показателя катушки вычесть конденсатор. Если общее напряжение разделить на найденный параметр, то по закону Ома получится сила тока. Эту формулу можно легко изменить, переведя на напряжение. Оно будет равно произведению силы тока и разности двух сопротивлений (индуктивное берется с катушки, а емкостное - с конденсатора).

Если раскрыть скобку, то первое значение отразит действительный показатель части общего напряжения, которая старается преодолеть сопротивление. Второе - слагающая всего напряжения, которая пытается преодолеть емкостный параметр. Так, общее напряжение можно рассматривать как сумму этих слагаемых.

Обычно значением активного сопротивления можно пренебречь. Если оно слишком велико, учитывать его все же нужно.

Для определения этого значения нужно вычислить квадратный корень из суммы двух частей:

  1. Общее активное сопротивление, возведенное в квадрат.
  2. Квадрат разности индуктивного и емкостного сопротивлений, то есть общее реактивное.

Очевиден переход к закону Ома. Если разделить силу тока на найденное значение, то можно получить напряжение.

Если соединить катушку с конденсатором последовательно, происходит меньшее смещение по фазе, чем если бы эти элементы были включены отдельно. Это связано с тем, что эти элементы действуют на цепь совершенно иначе, сдвигая баланс в разные стороны. Они компенсируют фазовый сдвиг, усредняют его значение.

Возможен и равный баланс. Полная компенсация соотношения между напряжением и током произойдет, если сопротивление катушки и конденсатора будут равны друг другу. В этом случае цепь будет вести себя так, будто бы в нее не включены эти элементы. Действие системы сведется к чистому активному сопротивлению, образованному соединительными проводами и катушкой. Сила действующего тока достигнет максимального значения, его можно будет вычислить по стандартному закону Ома.

При описанной ситуации действующие напряжения на катушке и конденсаторе сравняются, а также достигнут максимального значения. Если активное сопротивление в этой цепи минимальное, то локальные показатели будут в несколько раз превышать общее напряжение. Такое явление принято называть резонансом напряжений.

Важно понимать, что местные сопротивления напрямую зависят от показателей тока . Если частоту тока уменьшить, то индуктивное значение снизится, а емкостное - возрастет. Помимо активного сопротивления, в сети также возникнет реактивное, из-за чего резонанс сойдет на нет. Это случится и в том случае, если изменить значения индуктивности или емкости.

Если в цепи возникает резонанс, то энергия источника расходуется исключительно на нагрев проводов, то есть преодоление активного сопротивления, так как катушка перекидывает ток на конденсатор и обратно без усилий генератора. Ведь в цепи с одним из элементов ток колеблется, периодически переходя от истока в магнитное поле. Это касается катушки. В случае с конденсатором наблюдается аналогичная ситуация, только участвует электрическое поле. Если эти два элемента объединены, а также наблюдается резонанс, то энергия циклично движется от катушки к конденсатору и обратно. При этом она тратится в большей степени только из-за сопротивления проводника.

При нарушении резонанса количество энергии, требуемой первому и второму элементу, не совпадает. Возникнет избыток, который будет покрываться усилиями генератора. Этот процесс можно сравнить с механизмом часов с маятником. Если бы силы трения не было, он мог колебаться без использования дополнительного груза или пружины в механизме. Но эти элементы, когда необходимо, передают часть своей энергии маятнику, из-за чего тот преодолевает силу трения и движется непрерывно. При резонансе в электроцепи количество энергии, которую необходимо сообщить для поддержания колебаний, минимально.

Цепь считается колебательным контуром, если соблюдено несколько условий. Во-первых, ток должен быть переменным. Во-вторых, в систему должны входить генератор, конденсатор и катушка индуктивности. В-третьих, элементы должны быть соединены последовательно. В-четвертых, показатели внутренних сопротивлений должны быть равны.

Но резонанс невозможен, если частота генератора, емкость и индуктивность цепи не будут соответствовать значениям, зависящим от других параметров цепи. Все они вычисляются по специальным несложным формулам.

Польза и вред

Резонанс часто используют с пользой. Один из ярких бытовых примеров - починка радиоприемника . Электрика устройства настраивается таким образом, чтобы возник резонанс. Благодаря этому напряжение на катушке повышается и превосходит значение в цепи, созданной антенной. Это необходимо для нормальной работы приемника.

Но иногда действие резонанса сказывается на технике исключительно пагубно. Рост напряжения на некоторых участках может привести к их порче. Из-за того, что локальные значения не соответствуют генератору, отдельные детали или измерительные приборы могут выйти из строя.

Вверх