Усилитель на транзисторах: виды, схемы, простые и сложные. Выходной каскад Энергоемкость источника питания

На Хабре уже были публикации о DIY-ламповых усилителях, которые было очень интересно читать. Спору нет, звук у них чудесный, но для повседневного использования проще использовать устройство на транзисторах. Транзисторы удобнее, поскольку не требуют прогрева перед работой и долговечнее. Да и не каждый рискнёт начинать ламповую сагу с анодными потенциалами под 400 В, а трансформаторы под транзисторные пару десятков вольт намного безопаснее и просто доступнее.

В качестве схемы для воспроизведения я выбрал схему от John Linsley Hood 1969 года, взяв авторские параметры в расчёте на импеданс своих колонок 8 Ом.

Классическая схема от британского инженера, опубликованная почти 50 лет назад, до сих пор является одной из самых воспроизводимых и собирает о себе исключительно положительные отзывы. Этому есть множество объяснений:
- минимальное количество элементов упрощает монтаж. Также считается, что чем проще конструкция, тем лучше звук;
- несмотря на то, что выходных транзисторов два, их не надо перебирать в комплементарные пары;
- выходных 10 Ватт с запасом хватает для обычных человеческих жилищ, а входная чувствительность 0.5-1 Вольт очень хорошо согласуется с выходом большинства звуковых карт или проигрывателей;
- класс А - он и в Африке класс А, если мы говорим о хорошем звучании. О сравнении с другими классами будет чуть ниже.



Внутренний дизайн

Усилитель начинается с питания. Разделение двух каналов для стерео правильнее всего вести уже с двух разных трансформаторов, но я ограничился одним трансформатором с двумя вторичными обмотками. После этих обмоток каждый канал существует сам по себе, поэтому надо не забывать умножать на два всё упомянутое снизу. На макетке делаем мосты на диодах Шоттки для выпрямителя.

Можно и на обычных диодах или даже готовых мостах, но тогда их необходимо шунтировать конденсаторами, да и падение напряжения на них больше. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Если взять меньше и ёмкость, и резистор, то CRC-фильтр станет дешевле и меньше греться, но увеличатся пульсации, что не комильфо. Данные параметры, имхо, являются разумными с точки зрения цена-эффект. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме мощности 2 Вт будет вполне достаточно.

Далее переходим к самой плате усилителя. В интернет-магазинах продаётся куча готовых китов, однако не меньше и жалоб на качество китайских компонентов или безграмотных разводок на платах. Поэтому лучше самому, под свою же «рассыпуху». Я сделал оба канала на единой макетке, чтобы потом прикрепить её ко дну корпуса. Запуск с тестовыми элементами:

Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах, об этом чуть ниже. К авторской схеме из оригинальной статьи нужно сделать такие ремарки:

Не всё нужно сразу впаивать намертво. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям. Сначала с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. В одном из каналов мне не хватило 100 кОм, так что лучше брать эти подстроечники с запасом. Затем с помощью R1 и R2 (сохраняя их примерное соотношение!) выставляется ток покоя – ставим тестер на измерение постоянного тока и измеряем этот самый ток в точке входа плюса питания. Мне пришлось ощутимо снизить сопротивление обоих резисторов для получения нужного тока покоя. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток, по рекомендации автора, должен быть 1.2 А при напряжении 27 Вольт, что означает 32.4 Ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются и умрут. Ибо греются в основном они.

Не исключено, что в порядке эксперимента захочется сравнить звучание разных транзисторов, поэтому для них тоже можно оставить возможность удобной замены. Я попробовал на входе 2N3906, КТ361 и BC557C, была небольшая разница в пользу последнего. В предвыходных пробовались КТ630, BD139 и КТ801, остановился на импортных. Хотя все вышеперечисленные транзисторы очень хороши, и разница может быть скорее субъективной. На выходе я поставил сразу 2N3055 (ST Microelectronics), поскольку они нравятся многим.

При регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. По Сети ещё гуляет русская картинка-схема «Ультралинейный усилитель класса А», где этот конденсатор вообще предложен как 0.1 мкф, что чревато срезом всех басов под 90 Гц:

Пишут, что эта схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф.
- предохранители, их можно и нужно ставить как на трансформатор, так и на силовой вход схемы.
- очень уместным будет использование термопасты для максимального контакта между транзистором и радиатором.

Слесарно-столярное

Теперь о традиционно самой сложной части в DIY - корпусе. Габариты корпуса задаются радиаторами, а они в классе А должны быть большими, помним про 30 Ватт тепла с каждой стороны. Сначала я недоучёл эту мощность и сделал корпус со средненькими радиаторами 800см² на канал. Однако при выставленном токе покоя 1.2А они нагрелись до 100°С уже за 5 минут, и стало ясно, что нужно нечто помощнее. То есть нужно либо ставить радиаторы побольше, либо использовать кулеры. Делать квадрокоптер мне не хотелось, поэтому были куплены гигантские красавцы HS 135-250 площадью 2500 см² на каждый транзистор. Как показала практика, такая мера оказалась немного избыточной, зато теперь усилитель спокойно можно трогать руками – температура равна лишь 40°С даже в режиме покоя. Некоторой проблемой стало сверление отверстий в радиаторах под крепления и транзисторы – изначально купленные китайские свёрла по металлу сверлили крайне медленно, на каждую дырку уходило бы не менее получаса. На помощь пришли кобальтовые свёрла с углом заточки 135° от известного немецкого производителя - каждое отверстие проходится за несколько секунд!

Сам корпус я сделал из оргстекла. Заказываем у стекольщиков сразу нарезанные прямоугольники, выполняем в них необходимые отверстия для креплений и красим с обратной стороны чёрной краской.

Покрашенное с обратной стороны оргстекло смотрится очень красиво. Теперь остаётся только всё собрать и наслаждаться музы… ах да, при окончательной сборке ещё важно для минимизации фона правильно развести землю. Как было выяснено за десятилетия до нас, C3 нужно присоединять к сигнальной земле, т.е. к минусу входа-входа, а все остальные минуса можно отправить на «звезду» возле конденсаторов фильтра. Если всё сделано правильно, то никакого фона не расслышать, даже если на максимальной громкости поднести ухо к колонке. Ещё одна «земляная» особенность, которая характерна для звуковых карт, не развязанных с компьютером гальванически – это помехи с материнки, которые могут пролезть через USB и RCA. Судя по интернету, проблема встречается часто: в колонках можно услышать звуки работы HDD, принтера, мышки и фон БП системника. В таком случае проще всего разорвать земляную петлю, заклеив изолентой заземление на вилке усилителя. Опасаться тут нечего, т.к. останется второй контур заземления через компьютер.

Регулятор громкости на усилителе я не стал делать, поскольку достать какой-нибудь качественный ALPS не удалось, а шуршание китайских потенциометров мне не понравилось. Вместо него был установлен обычный резистор 47 кОм между «землёй» и «сигналом» входа. Тем более регулятор у внешней звуковой карты всегда под рукой, да и в каждой программе тоже есть ползунок. Регулятора громкости нет только у винилового проигрывателя, поэтому для его прослушивания я приделал внешний потенциометр к соединительному кабелю.

Я угадаю этот контейнер за 5 секунд...

Наконец, можно приступать к прослушиванию. В качестве источника звука используется Foobar2000 → ASIO → внешняя Asus Xonar U7. Колонки Microlab Pro3. Главное достоинство этих колонок - это отдельный блок собственного усилителя на микросхеме LM4766, который можно сразу убрать куда-то подальше. Намного интереснее с этой акустикой звучали усилок от мини-системы Panasonic с гордой надписью Hi-Fi или усилитель советского проигрывателя Вега-109. Оба вышеупомянутых аппарата работают в классе АВ. Представленный в статье JLH переиграл всех вышеперечисленных товарищей в одну калитку, по результатам слепого теста для 3 человек. Хотя разницу было слышно невооружённым ухом и без всяких тестов – звук явно детальнее и прозрачнее. Весьма легко, например, услышать различие между MP3 256kbps и FLAC. Раньше я думал, что эффект lossless больше как плацебо, но теперь мнение изменилось. Аналогичным образом гораздо приятнее стало слушать нескомпрессованые от loudness war файлы - dynamic range меньше 5 Дб вообще не айс. Линсли-Худ стоит затрат времени и денег, ибо аналогичный брендовый усилок будет стоить намного дороже.

Материальные затраты

Трансформатор 2200 р.
Выходные транзисторы (6 шт. с запасом) 900 р.
Конденсаторы фильтра (4 шт) 2700 р.
«Рассыпуха» (резисторы, мелкие конденсаторы и транзисторы, диоды) ~ 2000 р.
Радиаторы 1800 р.
Оргстекло 650 р.
Краска 250 р.
Разъёмы 600 р.
Платы, провода, серебряный припой и пр. ~1000 р.
ИТОГО ~12100 р.

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

В главе 3 были рассмотрены принципы построения схем усилителей мощности, работающих в режимах А, В или АВ. Показано, что наиболее благоприятным режимом для выходных каскадов усиления мощности является режим класса АВ. Принципиальная схема двухтактного усилителя мощности на однотипных биполярных транзисторах, работающего в режиме класса АВ, приведена на рис. 4.26. Небольшое смещение напряжения , подается на базы транзисторов с помощью резисторов .

Вместо резистора можно использовать прямосмещенный диод, создающий на базе транзистора напряжение смещения Для обеспечения режима класса АВ.

Диод осуществляет также термокомпенсацию рабочей точки покоя, так как при изменении температуры напряжение на эмиттерном переходе транзисторов и падение напряжения на открытом диоде меняются в одну и ту же сторону. Для получения большего эффекта термостабилизации диод и транзисторы следует подбирать.

Расчет выходной мощности, КПД и нелинейных искажений в каскаде усиления мощности класса АВ можно производить с статочной степенью точности по формулам (3.14), (3.16), (3.19), выведенным для режима класса В в § 3.2.

Трансформаторы, используемые в рассмотренных схемах, не позволяют снизить габариты и вес усилителей мощности, ухудшают их амплитудно-частотную характеристику. Изготовление трансформаторов требует больших затрат ручного труда, дефицитных материалов, и как элементы схемы трансформаторы имеют низкую надежность. Поэтому в настоящее время широко распространены бестрансформаторные двухтактные усилители мощности, построенные на паре транзисторов разного типа электропроводности (рис. 4.27, а).

Схема состоит из двух однотактных эмиттерных повторителей (плеч), работающих попеременно, в течение одного полупериода входного сигнала. Питание плеч осуществляется раздельно, от двух разнополярных источников постоянного напряжения , объединенных общей шиной, которая обычно заземляется. Благодаря разному типу электропроводности транзисторов каскад не требует парафазных входных напряжений.

Отрицательная обратная связь позволяет уменьшить нелинейные искажения, а также влияние асимметрии плеч. Однако в схемах с использованием эмиттерных повторителей выходное напряжение не может превышать входное, т. е. происходит по существу лишь усиление тока. Каскад (рис. 4.27, а) работает следующим образом.

В отсутствие входного сигнала точка имеет нулевой потенциал. На базе каждого транзисторов за счет делителя создается постоянное напряжение смещения , равное падению напряжения на соответствующем диоде и обеспечивающее работу каскада в режиме класса АВ.

Если пренебречь током смещения базы транзистора и положить через каждый диод протекает ток

При положительной полуволне входного напряжения с амплитудой диоды остаются открытыми. Напряжение поступает на базы транзисторов. При этом транзистор запирается, а ток базы транзистора увеличивается на величину

Ток через диод становится равным

где - ток через резистор R при положительном напряжении .

Ток станет равным нулю, т. е. диод закроется, при максимальном значении , которое можно определить из формулы (4.84), положив в ней . После преобразований получим

Таким образом, для расширения динамического диапазона входного сигнала необходимо уменьшать сопротивление резистора R в цепи смещения. Однако при уменьшении R шунтируется входное сопротивление эмиттерного повторителя, составляющего плечо каскада.

При отрицательной полуволне входного напряжения запирается транзистор и увеличивается ток транзистора .

Процессы преобразования входного сигнала в каскаде усиления мощности для положительной и отрицательной полуволн протекают в принципе одинаково. Поэтому формулы (4.83) и (4.84) Для обеих полуволн входного сигнала идентичны и отличаются лишь индексами, соответствующими открытому транзистору.

Графический расчет бестрансформаторного каскада производится по выходным характеристикам транзисторов и не отличается от графического расчета каскада с использованием . При этом роль сопротивления в бестрансформаторном каскаде играет сопротивление .

Для определения входного сопротивления, входной мощности и нелинейных искажений бестрансформаторного каскада следует пользоваться динамическими входными характеристиками, при построении которых по оси абсцисс следует откладывать не напряжение , а напряжение .

Наличие двух источников питания в схеме рис. 4.27, а может вызвать определенные неудобства при пользовании схемой. Для замены двух источников питания одним последовательно с нагрузкой включают разделительный конденсатор достаточно большой емкости (рис. ). По постоянному току транзисторы схемы включены последовательно. Поэтому при идентичных параметрах транзисторов постоянное напряжение на раздельном конденсаторе составляет и является «источником питания» для транзистора .

Напряжение коллектор-эмиттер транзистора равно .

Для исключения искажений выходного сигнала за счет конденсатора необходимо, чтобы напряжение оставалось постоянным в течение отрицательного полупериода (транзистор открыт) входного синусоидального сигнала с частотой, соответствующей низшей частоте полосы пропускания. Тогда изменение напряжения на нагрузке будет определяться изменением напряжения на эмиттере открытого транзистора .

Емкость конденсатора выбирают, пользуясь соотношением

где - выходное сопротивление эмиттерного повторителя одного из плеч усилителя.

Методика расчета каскада не отличается от методики расчета рассмотренных каскадов усиления мощности, т. е. производится с использованием статических характеристик транзистора одного плеча. При этом следует учесть, что рабочая точка покоя соответствует уровню напряжения питания транзистора одного плеча .

Недостатком бестрансформаторных каскадов, приведенных на рис. 4.27, является большое различие параметров у разных типов электропроводностей. Для устранения этого недостатка промышленностью выпускаются «пары» транзисторов с одинаковыми параметрами, но разным типом электропроводности, так называемые комплементарные транзисторы, ассорти мент которых соответствует различным уровням выходной мощ ности усилителя, например .

Чтобы увеличить нагрузочную мощность усилителей мощности, выполненных на основе эмиттерных повторителей, используют составные транзисторы. Принципиальная схема такого усилителя мощности приведена на рис. 4.28. В схеме (рис. 4.28) вместо резисторов R, определяющих ток диодов смещения применяют источники постоянного тока I, позволяющие расширить динамический диапазон входного сигнала.

Действительно, заменяя в формуле на и приравнивая , получим

Кроме того, источники постоянного тока, обладая высоким внутренним сопротивлением, не шунтируют высокое входное сопротивление эмиттерных повторителей на составных транзисторах , что также является существенным преимуществом источника тока перед обычными резисторами .

В качестве источника постоянного тока можно использовать транзистор, включенный по схеме с общей базой, входная цепь которого обеспечивает постоянство тока эмиттера, т. е. . Тогда при различных изменениях коллекторного напряжения рабочая точка будет перемещаться только по одной ветви семейства выходных характеристик (рис. 4.29) и ток коллектора останется практически постоянным.

Точнее, изменение коллекторного тока при изменении коллекторного напряжения транзистора и постоянном токе эмиттера определяется значением дифференциального сопротивления коллекторного перехода

которое в схеме ОБ велико и составляет несколько (сравните с в схеме ОЭ).

В схеме рис. 4.30 источники постоянного тока выполнены на транзисторах . Через каждый из транзисторов протекает ток

где - падение напряжения на резисторе или напряжение стабилизации стабилитрона , которое, очевидно, должно превышать напряжение на эмиттерном переходе транзистора .

Кроме стабилитронов в цепях смещения транзистора можно использовать светодиод с красным свечением, падение напряжения на котором в открытом состоянии составляет 1,8 В, или два последовательно включенных выпрямительных диода.

Ток эмиттера транзистора выбирается из условия

где - амплитуда базового тока транзистора .

Ток в делителе выбирается равным коллекторному току транзистора . Тогда сопротивления находятся из формулы

Что такое выходной транзистор ? Выходными, или оконечными, транзисторами называют транзисторы, входящие в конструкцию выходных (последних) каскадов в каскадных усилителях (имеющих минимум два или три каскада) частоты. Кроме выходных имеются ещё и предварительные каскады, это все, некоторые расположены до выходного.

Каскад — это транзистор укомплектованный резистором, конденсатором и иными элементами, обеспечивающими его работу в качестве усилителя. Всё имеющееся в усилителе количество предварительных каскадов должно обеспечивать увеличение напряжения частоты таким образом, чтобы полученное значение было пригодно для функционирования выходного транзистора. В свою очередь сам выходной транзистор повышает мощность частотных колебаний до значения, обеспечивающего работу динамической головки.

При сборке максимально простых транзисторных усилителей выходной транзистор берётся такой же маломощный, как и на предварительных каскадах. Многие находят это весьма уместным с точки зрения эргономичности прибора. Показания выходной мощности у подобного усилителя невелики: от 10-20 мВт до полутора сотен.

В ситуациях, когда проблема экономии не стоит так остро, то в конструкции выходного каскада используется транзистор с более высокими мощностными показаниями.

Качественность работы усилителя определяют несколько параметров, но максимально точное представление можно получить по: данным о выходной мощности (Р вых), чувствительности и частотной характеристике.

Измерить ток покоя выходного транзистора

Током покоя называют коллекторный ток, который проходит по транзисторам выходных каскадов при условии, что сигнал отсутствует. В условно-идеальных (невозможных на самом деле) условиях значение такого тока должно находиться на нулевой отметке. На деле это не совсем так, собственная температура и характерные различия разнотипных транзисторов влияют на данный показатель. В наихудшем случае возможен перегрев, который станет причиной теплового пробоя транзистора.

Кроме того, существует ещё один показатель — напряжение покоя. Он демонстрирует значение напряжения соединительной точки транзисторов. Если питание у каскада двухполярное, то напряжение будет равно нулю, а если однополярное, тогда напряжение составляет 1/2 питающего напряжения.

Оба эти показателя должны быть стабилизированы и для этого в качестве первоочередной меры следует озаботиться о контроле температурного режима.

На роль стабилизатора обычно берётся дополнительный транзистор, которые в качестве балласта подсоединяется к базовым цепям (наиболее часто он при этом оказывается прямо на радиаторе, максимально близко к выходным транзисторам).

Чтобы выявить, каков ток покоя выходных транзисторов или каскадов, необходимо при помощи мультиметра измерить данные по падению напряжения для его эммитерных резисторов (значения обычно выражаются в милливольтах), а потом, опираясь на закон Ома и данные по реальному сопротивлению, можно будет вычислить нужный показатель: значение падения напряжения разделить на значение реального сопротивления — значения тока покоя для данного выходного транзистора.

Все замеры необходимо производить весьма осторожно, иначе придётся производить замену транзистора .

Есть ещё один способ, гораздо менее травмоопасный. Взамен предохранителей потребуется установить сопротивление в 100 Ом и минимальную мощность в 0,5 Ватт для каждого канала. При отсутствии предохранителей сопротивление подсоединяется к разрыву питания. После осуществляется подача питания усилителю, производятся замеры показаний по падению напряжения на приведённом выше уровне сопротивления. Дальнейшая математика до крайности проста: падению напряжения в 1 В соответствует ток покоя величиной в 10мА. Аналогичным образом при 3,5 В получится 35 мА и так далее.

Классификация выходных каскадов

Есть несколько методов сборки выходного каскада:

  • Из транзисторов, имеющих различную проводимость. Для этих целей чаще всего используют «комплементарные» (близкие по параметрам) транзисторы.
  • Из транзисторов, имеющих одинаковую проводимость.
  • Из транзисторов составного типа.
  • Из полевых транзисторов.

Работа усилителя, сконструированного, при помощи комплементарных транзисторов, отличается простотой: положительная сигнальная полуволна запускает работу одного транзистора, а отрицательная — другого. Необходимо, чтобы плечи (транзисторы) работали в одинаковых режимах и для реализации этого используется базовое смещение.

Если усилитель использует в работе одинаковые транзисторы, то никаких принципиальных отличий от первого варианта это не имеет. За исключением того факта, что для подобных транзисторов сигнал отличаться не должен.

При работе с остальными разновидностями усилителей необходимо помнить, что отрицательное напряжение для p-n-p транзисторов, и положительное — для n-p-n транзисторов.

Обычно звание усилителя мощности принадлежит именно оконечному каскаду, поскольку он работает с самыми большими величинами, хотя с технической точки зрения так можно называть и предварительные каскады. К числу основных показателей усилителя можно отнести: полезную, отдаваемую в нагрузку мощность, КПД, полосу усиливаемых частот, коэффициент нелинейных искажений. На эти показатели весьма сильно влияет выходная характеристика транзистора. При создании усилителя напряжения может быть использована однотактная и двутактная схемы. В первом случае режим работы усилителя линейный (класс А). Данная ситуация характеризуется тем, что протекание тока по транзистору длится до тех пор пока не окончится период входного сигнала.

Однотактный усилитель отличается высокими показателями по линейности. Однако эти качества могут искажаться при намагничивании сердечника. Для предотвращения подобной ситуации необходимо озаботиться наличием цепи трансформатора с высоким уровнем индуктивности для первичной цепи. Это отразится на размерах трансформатора. К тому же, ввиду принципа его работы, он обладает достаточно низким КПД.

В сравнении с ним данные по двутактному усилителю (класс B) куда выше. Данный режим позволяет искажать форму транзисторного тока на выходе. Это увеличивает результат отношения переменного и постоянного токов, снижая вместе с тем уровень потребляемой мощности, это и считается самым главным плюсом применения двутактных усилителей. Их работа обеспечивается подачей двух равных по значению, но фазно противоположных напряжений. Если отсутствует трансформатор со средней точкой, то можно воспользоваться фазоинверсным каскадом, который снимет противоположные по фазе напряжения с соответственных резисторов цепей коллектора и эмиттера.

Существует двухтактная схема, не включающая в себя выходной трансформатор. Для этого потребуются разнотипные транзисторы, работающие как эмиттерные повторители. Если оказывать воздействие двуполярным входным сигналом, то будет происходить поочерёдное открытие транзисторов, и расхождение токов по противоположным направлениям.

Замена транзисторов

Поскольку УНЧ (усилители низких частот) становятся всё популярнее, то совершенно не лишним будет узнать, что делать, если такой прибор выйдет из строя.

В случае, если греется выходной транзистор, то велика вероятность, что он сломался или перегорел. В такой ситуации необходимо:

  • Удостовериться в целостности всех прочих диодов и транзисторов, входящих в усилитель;
  • Когда будет производиться ремонт очень желательно подсоединять усилитель к сети через лампочку в 40-100 В, это поможет сберечь оставшиеся целыми транзисторы при любых обстоятельствах;
  • В первую очередь перемыкается участок эмиттер-база и транзисторы, потом осуществляется первичная диагностика УНЧ (любые изменения и реакции легко регистрируются при помощи свечения лампы);
  • Основным показателем рабочего состояния и адекватной настройки транзистора можно считать данные по напряжению для участка база-эмиттер.
  • Выявлять данные по напряжению межу корпусом и отдельными участками схемы — занятие практически бесполезное, никаких сведений о возможной поломке оно не даёт.

Даже наиболее упрощённый вариант проверки (до и после того как замена выходных транзисторов была произведена) обязательно должен включать в себя несколько пунктов:

  • К базе и эмиттеру выходного транзистора подать минимальное напряжение, чтобы установился ток покоя;
  • Проверить результативность своих действий по звуку или при помощи осциллографа («ступенька» и искажения сигнала при мощностном минимуме должны отсутствовать);
  • При помощи осциллографа выявить симметрию по ограничениям на резисторы при максимальной мощности работы усилителя.
  • Удостовериться, что «паспортная» и действительная мощности усилителя совпадают.
  • Обязательно требуется проверить рабочее состояние токоограничительных цепей, при наличии таковых на оконечном каскаде. Здесь не обойтись без регулируемого нагрузочного резистора.

Первое включение после того как ремонтные работы были произведены:

  1. Нежелательно сразу же устанавливать выходные транзисторы, для начала прибор задействуется только с предварительным каскадом (каскадами), и лишь после этого подсоединять оконечный. В ситуациях, когда осуществить включение без выходного транзистора технически невозможно, следует заменить резисторы на имеющие номинальное значение в 5-10 Ом. Это исключит вероятность перегорания транзистора.
  2. Перед тем как осуществлять каждое повторное включение усилителя потребуется разрядка электролитических конденсаторов питания УНЧ.
  3. Проконтролировать данные по току покоя в условиях низкой и высокой температуры радиатора. Разница при соотношении должна быть не более двух раз. В противном случае придётся заняться термостабилизатором УНЧ.

Выходные усилители мощности обычно являются выходными каскадами многокаскадного усилителя и предназначены для обеспечения заданной мощности нагрузки РН при заданном сопротивлении нагрузки RН, как правило, низкоомной. Получение на выходе усилителя большой мощности предполагает работу его транзисторов при больших значениях токов и напряжений. Отсюда следует, что одним из основных параметров усилителя становится его КПД. К тому же переменные составляющие токов и напряжений в этом случае соизмеримы с постоянными составляющими сигналов. На свойства усилителя сильно влияют связь параметров транзистора с режимами его работы и нелинейность характеристик. В выходных усилителях мощности должны использоваться транзисторные каскады с малым выходным сопротивлением, а вводимые цепи ООС должны быть только по напряжению. Это обусловило применение в усилителях мощности только двухтактных схем усиления, обеспечивающих работу транзисторов в режимах класса В и АВ. Усилители, работающих в режиме класса А (выходной транзистор всегда в открытом состоянии), имеют малое КПД, поэтому при больших мощностях сигналов такие схемы используется редко. На рис. 11.17 показана двухтактная схема усилителя мощности, работающая в режиме класса В. Усилитель, собранный на двух биполярных транзисторах различного типа проводимости, имеющих одинаковые параметры, получил название комплементарный усилитель. Транзистор VT1 открыт при положительных значениях сигнала, а транзистор VT2 - при отрицательных. При нулевом входном напряжении коллекторный ток отсутствует и мощность, рассеиваемая на транзисторах, близка к нулю. При выходной мощности 10 Вт каждый транзистор рассеивает мощность менее 10 Вт, максимально возможный коэффициент полезного действия схемы составляет 78%

Рис. 11.17. Двухтактный усилитель мощности, работающий в режиме класса В

Этой схеме присуще следующее свойство: выходной сигнал повторяет входной с разницей на величину падения напряжения UБЭ, на положительном интервале входного сигнала выходное напряжение примерно на 0,6 В меньше, чем входное, на отрицательном интервале наоборот. Для синусоидального входного сигнала выходной будет таким, как показано на рис. 11.11, а. Такое искажение сигнала называется переходным искажением. Для улучшения формы сигнала нужно немного сместить двухтактный каскад в состояние проводимости, как показано на рис.11.18.

Рис.11.18. Двухтактный усилитель, работающий в режиме класса АВ

Резисторы смещения R переводят диоды в состояние проводимости, благодаря чему этому напряжение на базе VT1 превышает входное напряжение на величину напряжения на диоде, а напряжение на базе VT2 на величину падения напряжения на диоде меньше, чем входное напряжение. При нулевом входном сигнале оба транзистора немного приоткрыты, их рабочие точки находятся в начале линейного участка входных характеристик (рис. 11.9). Резистор R выбран так, чтобы обеспечивался необходимый базовый ток в выходных транзисторах при пиковых значениях выходного сигнала. В этой схеме несколько увеличивается мощность, рассеиваемая на транзисторах, и уменьшается КПД. Для улучшения параметров схемы часто используют двухтактный усилитель мощности с операционным усилителем (рис.11.19). В схеме использована общая отрицательная обратная связь (резисторы R1 и R2), охватывающая оба каскада (на операционном усилителе и на биполярных транзисторах), благодаря которой схема создает настолько малые искажения, что часто не требует дополнительных цепей смещения для каскада на транзисторах VT1 и VT2. Поскольку напряжение на нагрузке RН примерно равно напряжению на выходе ОУ, то мощность на выходе усилителя ограничивается выходным напряжением ОУ.

Рис.11.19. Усилитель мощности с ОУ

Рассмотренный выше усилитель имеет один серьезный недостаток: он не обладает температурной стабильностью. При нагревании выходных транзисторов (они нагреваются, так как рассеивают мощность), напряжение uКЭ начинает убывать, а коллекторный ток покоя — возрастать. Выделяющееся при этом дополнительное тепло усугубляет положение и повышает вероятность того, что в схеме получится неконтролируемая тепловая положительная обратная связь (эта вероятность зависит от ряда факторов: насколько велик радиатор для отвода тепла, совпадает ли температура диодов с температурой транзисторов и т.д.). Для исключения этого эффекта используют схему с параметрической температурной стабилизацией режима (рис. 11.20). Для примера здесь показан случай, когда входной сигнал снимается с коллектора предшествующего каскада, резистор выполняет двойную функцию: он является коллекторным резистором транзистора VT1 и формирует ток для смещения диодов и смещающего резистора в основной двухтактной схеме. Резисторы R3 и R4 обычно имеют сопротивление несколько ом и ниже, они уменьшают влияние критического смещения тока покоя: напряжение между базами выходных транзисторов должно быть немного больше, чем удвоенное падение напряжения на диоде, дополнительное падение напряжения обеспечивает регулируемый резистор смещения R2 (иногда его заменяют еще одним диодом).

Рис.11.20. Усилитель с температурной параметрической стабилизацией режима

Падение напряжения на резисторах R3 и R4 составляют несколько десятых долей вольта, благодаря этому температурное изменение напряжения UБЭ не приводит к быстрому возрастанию тока (чем больше падение напряжения на R3 и R4, тем менее чувствителен к температуре усилитель) и схема работает стабильно. Стабильность увеличивается, если диоды имеют тепловой контакт с выходными транзисторами (размещены на их корпусе). Еще одно преимущество схемы состоит в том, что регулировка тока покоя позволит управлять величиной переходных искажений. При выборе тока покоя следует найти компромисс между уменьшением искажений и рассеиваемой мощностью в состоянии покоя. Составной транзистор. Если соединить транзисторы, как показано на рис. 11.21, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов.

Рис.11.21. Составной транзистор

Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс. Для улучшения параметров схемы между базой и эмиттером транзисторов включают резистор R, который предотвращает смещение транзистора VT2 в область проводимости за счет токов утечки транзисторов VT1 и VT2. Сопротивление резистора выбирают таким, чтобы токи утечки создавали на нем падение напряжения, не превышающее падение на диоде в предыдущей схеме, и вместе с тем, чтобы через него протекал ток, малый по сравнению с базовым током транзистора VT2. Обычно сопротивление R составляет несколько сотен ом в мощном составном транзисторе. Промышленность выпускает составные транзисторы в виде законченных модулей, включающих, как правило, и эмиттерный резистор.

Вверх