В дорогу — с музыкой: как выбрать хорошие динамики в машину. Как выбрать низкочастотные динамики на авто Три карты, открытые Тилем и Смоллом

Характеристики современного автомобиля – это не только технические моменты транспортного средства, но и атрибутика, под которой понимаются, например, динамики. Трудно представить автомобильные поездки без музыкального сопровождения. При этом на первый план выходит качество звука, что возможно лишь при наличии «правильных» динамиков. Чтобы обзавестись такими, надо знать про них, если и не все, то многое, поэтому остановимся на критериях выбора этих акустических устройств.

Виды

В зависимости от типа акустика подразделяется на коаксиальную и компонентную. В первом случае обеспечивается удобство монтажа и экономия средств, так как такие системы отличаются более низкой ценой, а во втором достигается более высокое качество звука.

  1. Коаксиальная акустика – все динамики заключены в один корпус. Таких динамиков несколько, и они отличаются индивидуальностью звучания с технической точки зрения. Классификация коаксиальной акустики производится на основе того, сколько имеется поддиапазонов. Каждый поддиапазон – отдельный динамик. Меньшие по размеру колонки размещают непосредственно перед диффузором большого.
  2. Компонентная акустика – все динамики являются отдельными устройствами, установка которых не ограничена одним корпусом. Качество звучания такой системы зависит от того, как будут расположены динамики в целях оформления акустики. В итоге можно добиться практически идеального звука, если схема расположения реализована оптимально. Выполнение этой задачи отличается определенной проблематичностью, так как формирование звукового ряда производится на основе нескольких частот. Стоимость этих систем выше, но такие расходы оправдывают себя.

Коаксиальная акустика теряет своих почитателей, так как автолюбители на первое место ставят качество звука, что могут обеспечить лишь компонентные аудиосистемы. Это возможно за счет динамиков, отличающихся частотами звука. Например, средние и низкие диапазоны – это мидбасы, а высокие – твитеры. В ряде систем можно видеть, что они оснащены динамиками (один или два), отличающимися большими по размеру тарелками. Их предназначение – низкие частоты.

Стоимость

Не является неоспоримым фактом, что только дорогая акустика гарантирует качественное звучание. В некоторых случаях высокая оплата берется за бренд. Альтернативой дорогой системы могут стать отдельные динамики по доступной цене, характеризуемые вполне приемлемыми характеристиками. Нижний порог цен коаксиальной акустики, имеющей удовлетворительные параметры, – 1500 руб. Если вы хотите получить по настоящему качественное звучание, то надо настраиваться на ценник от 5000 руб.

Внимание! Чтобы исключить ненужные траты, надо подбирать колонки, которые подходят именно вашей автомагнитоле. Обращайте внимание на ее штатные отверстия, ориентированные на подключение динамиков.

Компонентную акустику дешевле 3000 рублей не стоит рассматривать как возможный вариант приобретения. Качественные системы не могут стоить дешевле 5000–7000 руб. При выборе отдельных динамиков следует иметь в виду, что здесь можно сэкономить. Две колонки, имеющие удовлетворительное звучание, могут обойтись в 2000 руб. За более мощные образцы подобной продукции придется выложить значительно больше.


Затраты на аппаратуру высокого класса обычно укладываются в диапазон 20–30 тыс. руб. Такие системы способны удовлетворить запросы большинства автолюбителей. Те, кто стремится к максимальному качеству звука и готов нести соответствующие траты, должны ориентироваться на профессиональные системы с ценником от 40 тыс. руб.

Размер

Они все отличаются размерами, что очень важно в плане акустического оформления. Не стоит выбирать динамики, имеющие размер меньше 16 см. В противном случае не удастся добиться приемлемого качества звука на низко и среднечастотных диапазонах. Применительно к высокочастотным этой рекомендации не стоит следовать.

Внимание! Для того чтобы звук на низких частотах приобрел глубину басов, требуются динамики, имеющие значительные размеры.

Если вы не собираетесь использовать сабвуфер, то желательно придерживаться того, чтобы фронтальная акустика соотносилась с размером 16–17 см. Наличие же сабвуфера способно снизить допустимые параметры до 13 см без потери качества звучания.

Мощность, резонансная частота и чувствительность

Мощность является важным показателем динамиков, которые надо подбирать с учетом возможностей магнитолы. Мощность последней должна быть несколько ниже на выходе по сравнению с тем, на что способны динамики.

Резонансная частота, характеризуемая низкими показателями, способствует глубине басов. Оптимально, если ее значение будет составлять от 60 до 75 Гц.

Когда колонка отличается высокой чувствительностью, это несет определенные преимущества. Под одним из таких плюсов понимается возможность отказаться от усилителя, что удешевляет систему в целом.

Акустическое оформление

Важный момент, имеющий непосредственное отношение к качеству звука. Предусмотрена общая классификация, подразумевающая акустическое оформление, определяемое как нагруженное или разгруженное.

В первом случае наличие жесткого подвеса и воздуха, оказывающего сопротивление, приводит к тому, что диффузор ограничивается в своих колебаниях. Применительно ко второй классификации это достигается исключительно за счет жесткости подвеса.

При этом системы подразделяют на одинарные и двойные, где первые обеспечивают одностороннее излучение звука, а вторые – двустороннее. Производители акустики для автомобилей в большей степени ориентируются лишь на несколько вариантов акустического оформления, отличающиеся популярностью среди автолюбителей.

Большое распространение получило акустическое оформление по типу «закрытый ящик». Принцип здесь такой: корпус, выполненный из звукопоглощающего материала, и отверстие в нем, связывающее воздух внутри и снаружи. В нем монтируется так называемый свободный динамик, тело которого выполняет функцию огромного экрана.

Расположение

Построение акустической системы в рамках ограниченного пространства, под которым понимается салон транспортного средства, не выглядит простым процессом. Если дома вы можете просто развести колонки по сторонам, то здесь это не пройдет. Динамики в авто должны быть установлены правильно. Только соблюдение определенной схемы и правил монтажа способно привести к тому, что будет получен действительно качественный звук.


Основные правила установки акустики следующие:

  • колонки надо выносить максимально далеко вперед;
  • для получения цельного звучания динамики с разными частотами требуется устанавливать в непосредственной близости друг от друга.

Практически во всех автомобилях предусмотрены специальные места для монтажа динамиков:

  • двери – высокочастотные;
  • задняя часть авто – мидбасы.

Отличается распространенностью схема, когда колонки устанавливаются сзади. Если этот так, то следует разнести на достаточное расстояние сабвуфер и динамики. Оптимальная реализация такой схемы, когда местом размещения динамиков становятся задние двери, а сабвуфера – багажник. Передняя часть авто подходит для установки средне и высокочастотных динамиков. Например, подходящее место для таких колонок находится вблизи от зеркал.

В любом случае работа мощной акустики способствует возникновению постороннего шума как результат дребезжания дверей. Исправить эту ситуацию можно посредством проведения работ по вибро и шумоизоляции. Если сделать все это по максимуму, то пропадут не только лишние шумы в салоне, но и звук приобретет глубину. Проведение такой процедуры требует качественных материалов, а это дорого.

В то же время даже частичная изоляция дверей на предмет лишних шумов с таким дополнением, как деревянные кольца, позволяет сэкономить. Можно установить недорогие динамики и получить звучание, сопоставимое с тем, что выдают дорогие образцы акустики, местом монтажа которых являются штатные места.

Установка акустики в авто обычно инициируется самим водителем. Именно он является главным слушателем, что заставляет позиционировать динамики с учетом его местонахождением в салоне. Для этого средне и высокочастотные колонки должны размещаться не просто спереди, а с набольшей удаленностью от слушателя. Это позволяет сделать подиум, устанавливаемый на приборной панели.

Внимание! Требуемая ширина звуковой сцены достигается тогда, когда ВЧ-динамики на передней стойки, расположены под определенным углом. Обычно их направляют друг на друга.

Когда динамики разнесены по салону авто, воспроизводимый ими звук достигает ушей водителя в разное время. Чтобы этого избежать, требуется временная коррекция. Она обеспечивается посредством соответствующего процессора, которым оснащается магнитола или он устанавливается отдельно. От самого процессора никоим образом не зависит качество звучания. Он лишь дает возможность оценить его качество тому, кто физически не может находиться в центре по отношению к динамикам.

Какие динамики лучшие

Для определения лучших динамиков потребуется их номинирование в зависимости от вида.


Коаксиальные

  1. Pioneer TS-1339 – большое число автолюбителей признают эти динамики лучшими. Их размер составляет 13 см, что позволяет устанавливать колонки в специально предназначенные для этого места. Они выдают чистый звук и правильные басы, передаваемые без искажений. Если ваши требования к звуку не очень придирчивые, то эти динамики являются оптимальным выбором, так как они обладают доступной ценой и приемлемыми характеристиками.
  2. Morel Tempo Coax 6 – возможность создания двухполосной системы с уникальным качеством звучания. Комфорт звука достигается за счет разворота «высокочастотника» на 20 градусов. Мягкий купол ВЧ-колонки и ее невысокий уровень резонанса – это условия для воспроизведения частот в широком диапазоне. Под положительными моментами этой системы понимается мощность, а также оптимальный баланс звука и тот факт, что искажения практически отсутствуют. В то же время низким частотам не хватает так называемого бархатного звучания.
  3. JBL GTO-938 – серьезная сила звука как отличительный признак этих динамиков, которым также присуща высокая чувствительность. Имеют овальную форму, что содействует стильному оформлению. Отличаются сбалансированностью частот (высоких и низких).

Компонентные

  1. Morel Tempo 6 – полноценная акустика, характеризуемая высокими техническими параметрами и сборкой на высоком уровне. Ее комплектация предусматривает наличие 2 твитеров, 2 кроссоверов, основных динамиков и бонуса в виде дополнительной чаши. Высокая детализация звука.
  2. Focal Performance PS 165 – система с феноменальным звучанием, гарантирующая сбалансированный звук, имеющий высокую насыщенность. Подходит для использования в качестве фронтальных колонок. В рамках этого бренда производится выпуск действительно качественных динамиков, способных удовлетворить запросы даже заядлых скептиков.
  3. Mystery MJ 105BX – одна из лучших колонок среди себе подобных. Доступная стоимость, высокие технические характеристики и отличное звучание. Под плюсами этой корпусной колонки следует понимать ее компактность и простоту монтажа.

Вывод

Перед тем, как отправляться за покупкой автомобильных динамиков, надо ответить для себя на пару вопросов:

  • какого вида акустическая система необходима?
  • каков размер элементов акустики максимально допустим?

Ответ на первый вопрос определяет качество звука, а на второй – возможность монтажа системы.

Если вас интересует качественное и чистое звучание, то не всегда оно обеспечивается только дорогими акустическими системами. Некоторые модели бюджетной акустики звучат вполне пристойно. Что касается мощного и безупречного звука, то это дорого, но того стоит.

Также качество акустического оформления будет зависеть от того, где именно вы установите динамики, но здесь придется поэкспериментировать.

Видео

В это короткой информационной статье мы рассмотрим основные технические характеристики динамиков, которые необходимо знать при выборе автомобильной акустики или при изготовлении автомобильной акустики своими руками.

На картинке ниже показаны основные компоненты типичного звукового динамика:

Рассмотрим какими особенностями должны обладать хорошие звуковые динамики для автомобильной акустики.

Мощный динамик будет снабжен двумя раздельными звуковыми катушками, намотанными на одном и том же каркасе. Каждая катушка может быть подключена к отдельному каналу на стереоусилителе или они могут быть подключены последовательно или параллельно и запитаны от одного источника. Один DVC-динамик может быть использован вместо двух обычных динамиков тогда, когда свободное пространство в большой цене.

Фильтры

Фильтр — это электронная схема в устройстве аудиосистемы, которая позволяет определенным частот проходить одновременно, блокируя другие. Активные фильтры содержат компоненты, требующие дополнительного питания. Это, так называемые, операционные усилители (ОУ) и, как правило, они встраиваются перед главным усилителем. Пассивные фильтры не содержат компоненты требующих питания и обычно встраиваются между усилителем и динамиком.

Виды фильтров, которые обычно используются в конструкциях аудиосистем:

  • Фильтры низких частот: пропускают нижние частоты, ослабляют высокие частоты.
  • Фильтры высоких частот: высокие частоты пропускает, ослабляет низкие частоты.
  • Регулируемые полосы пропускания: когда частоты за пределами определенного диапазона ослабляются.

Изобарная система динамиков

Название происходит от древнегреческого ἴσος — «одинаковый» и βάρος «тяжесть». Другими словами — распределенная нагрузка. Это метод с использованием двух динамиков, работающих в тандеме для достижения меньшего размера корпуса с учетом требований дизайна. Теоретически VAS (Эквивалентный объем динамика) в двойной системе будет вдвое меньше чем у двух отдельных динамиков, в результате чего расчетный размер корпуса также уменьшается вдвое. Чувствительность изобарной системы будет та же, что и у системы в один динамик, но вы потеряете в мощности SPL. Крепление по типу «Раскладушка», где динамики устанавливаются лицом к лицу и один динамик подсоединяется в противофазе к другому, похоже самая популярная изобарная система, используемая сегодня, так как она является самой простой в изготовлении.

Wife Acceptance Factor (WAF) — фактор одобрения женой

В общем случае, относится к элементам дизайна, которые повышают вероятность того, что ваша жена одобрит покупку дорогих продуктов потребительской электроники, таких как высококачественные акустические системы, домашние кинотеатры и персональные компьютеры и т.д. Стильные, компактные формы и привлекательные цвета, как правило, повышают уровень WAF. Термин является шутливым жаргонным сленгом в электронике и обозначает «Форм-фактор» и «Привлекательность форм» и происходит от гендерного стереотипа, что мужчины предрасположены ценить технические новинки по критериям эффективности, тогда как женщин привлекают визуальные и эстетические факторы. Другими словами, грубое измерение того, что вы можете вернуться домой к вашей благоверной и она не поднимет шума по поводу внешнего вида вашего приобретения.

Сабвуфер

Динамик предназначенный для воспроизведения низких звуковых частот на адекватной громкости. Большинство сабвуферов, или «сабов», как они обычно называются, предназначены для работы от 80 Гц и ниже до уровня где человеческое ухо может улавливать звуки. Бас-единицы небольших трех компонентных системы тоже обычно называют «сабвуферы», однако они зачастую имеют ограниченные возможности воспроизведения частот ниже 50 Гц или около того.

T/S (Тиэля Смолла) параметры

Свод терминов/параметров, обычно используемых в описании характеристик конкретного динамика. Наиболее распространенным T/S параметры с которыми мы сталкиваемся являются:

Fs = Резонансная частота динамика. На открытом воздухе сопротивление динамика достигнет своего пика на этой частоте.
Pe = Тепловая мощность динамика, в Вт. Если динамик постоянно находится в режимах свыше допустимой Pe, он может преждевременно сгореть или выйти из строя.
Qes = Электрическая составляющая Fs динамика. Это мера показывающая тенденцию динамика резонировать на Fs-частоте, основанная на его электрических характеристиках, например сила магнита, характеристики магнитопровода, т. д. Qes обычно доминирует над остальными резонансными характеристиками динамика.
Qms = Механическая составляющая Fs динамика. Эта мера динамика показывает тенденцию резонировать на Fs-частоте, основанная на его механических характеристиках, например, объемных параметров, параметры центрирующей шайбы, веса катушки и др.
Qts = Общее значение составляющих динамика на частоте Fs. Это мера показывает тенденцию резонировать динамика на Fs частосте, исходя из всех общих характеристик. Qts может быть вычислен, используя уравнение:

Qts= Qms*Qes/(Qms+Qes))

Re = Сопротивление постоянному току звуковой катушки динамика. Re динамика меньше чем общее номинальное сопротивление (обычно 4 или 8 Ом).
Sd = Эффективная площадь поверхности динамика. Естественно, зависит от глубины диффузора динамика.
Xmag = Предельный ход диффузора с учетом магнитных ограничений колебаний динамика. Xmag определяется размер смещения конуса диффузора, при котором BL — магнитная сила динамика — упадет до 70% от номинального значения на конусе в исходном состоянии.
Xmech = Максимальное физическое искривление диффузора. Превышение Xmech обычно приводит к повреждению диффузора.
Xsus = Предельное ход диффузора, ограниченный упругостью подвеса. Xsus определяется как точка, в которой упругость диффузора снизилась до 25% от значения на конусе в исходном положении.
Xmax = Линейный (в одну сторону) ход конуса диффузора. Значение Xmax используется для определения максимального возможного линейного SPL динамика, и может быть получен несколькими способами. Объективно, один из самых правильных методов получает этот параметр как наименьшее значение между Xmag и Xsus при движении конуса в каждом из направлений.
Vas = Эквивалентный объем динамика. Объем воздуха, который имеет такую же упругость что и подвес динамика. Потому чем меньше воздуха, тем более «упругий» динамик, чем больше воздуха, тем больший Vas определяет собой «свободную» подвеску динамика
Vd = Пиковое значение рабочего объема динамика. Vd = Sd*Xmax. Другими словами — объем воздуха, который может сдвинуть динамик за один проход на пиковых значениях, т.е. на Xmax

Рассмотрим конструкцию и характеристики типового динамического громкоговорителя (динамика). Внешние размеры - обычно от 5 до 30 см в переводе на диаметр диффузора, масса соответствует размерам.

Диффузор – эта штука воспроизводит звук. Материал диффузора - чаще всего, прессованная бумага (целлюлоза) с пропиткой для ширпотребных моделей. Основное - чтобы диффузор не подвергался деформациям во время работы. Для моделей, предназначенных для работы в автомобилях, часто используют вспененные пластмассы, как материал не гигроскопичный и обладающий достаточной жёсткостью. Для дорогих моделей выбор материала диффузора более широк, и определяется, в основном, «крутизной» разработчика. Вошло в моду изготовление диффузора из алюминия, нередко используются комбинированные материалы (сандвич).

Магнитная система – создаёт магнитное поле, в котором перемещается катушка. Очевидно, что чем сильнее это поле, тем громче «орёт» динамик, поэтому конструкторы стремятся использовать высокоэффективные магнитные материалы. При ударах, самостоятельной разборке магнитной системы, высокой температуре – характеристки могут необратимо ухудшится. Иногда магнитная система сверху экранируется (например, для динамиков, встраиваемых в телевизоры и мониторы). Раньше встречались конструкции, где для усиления магнитного поля на магнитную систему наматывалась дополнительная катушка, питаемая от вспомогательного источника.

Керн – передаёт магнитное поле внутрь катушки, но не должен сам намагничиваться, поэтому изготавливается из магнитомягкого материала.

Каркас катушки - «носитель» катушки, изготовляется из тонкого прочного материала, не экранирующего магнитное поле и обладающего минимальной массой. В старых конструкциях - исключительно электрокартон, в новых - алюминий.

Звуковая катушка – к ней и подводится мощность, развиваемая усилителем. Активное сопротивление катушки (по постоянному току):
от 2 Ом (для автомобильных динамиков);
4 - 6 - 8 Ом (наиболее распространены);
16 - 32 Ома (для экономичных или специальных целей).

Катушка чаще всего наматывается в два слоя обычным проводом в лаковой изоляции, но в особо мощных конструкциях провод может быть и прямоугольного сечения - для увеличения эффективного заполнения зазора. Катушка приклеивается к каркасу. При некачественной проклейке, или при перегрузке динамика часть витков может «болтаться» внутри и создавать звуковые эффекты, не относящиеся к категории высококачественного звуковоспроизведения. В прошлом веке радиолюбители самостоятельно перематывали звуковые катушки, тем более, что конструкция многих динамиков это позволяла.

Центрирующая шайба – назначение понятно из названия. Главное - не создавать помех перемещению звуковой катушки, и быть воздухопроницаемой, иначе внутри магнитной системы,где находится катушка, образуется замкнутый объём. Но о его вреде мы вспомним дальше, когда будем рассматривать акустическое оформление громкоговорителей. Материал шайбы - что-то вроде пропитанной марли - для ширпотреба, и что угодно - для эксклюзива.

Из-за повышенной влажности или других нехороших влияний может нарушаться центровка, дефект не устраним без разборки динамика. Проверить центровку можно,аккуратно нажимая на диффузор и прислушиваясь к звукам внутри- их быть не должно!

Выводы катушки - выполняются спецпроводом «мишурой» из перемешанных тонких медных и шёлковых нитей. Выводы не должны мешать перемещению диффузора. Из-за постоянных перемещений имеют склонность к обрывам около контактных пятачков, где припаиваются к выводам звуковой катушки. Хорошей альтернативой является провод МГТФ со снятой изоляцией. Слишком длинные выводы могут тереться об диффузор и создавать интересные звуки, придающие неповторимый колорит звучанию вашей акустики, но не ценимые другими слушателями.

Зазор – зазор между магнитной системой и керном, где перемещается звуковая катушка. Чем меньше зазор, тем выше в нём индуктивность, и тем выше эффективность работы динамика.

Предпринимались неоднократные попытки увеличить индуктивность без увеличения зазора путём введения туда магнитной жидкости. Но это приводило к увеличению сопротивления перемещению диффузора и повышению нижней границы воспроизводимых частот. Попадание в зазор мусора чревато искажениями звука, поэтому зазор обычно закрывают колпачком (на рисунке отсутствует). Заодно колпачок улучшает воспроизведение верхних звуковых частот.

Рама - она же каркас, она же диффузородержатель. В дешёвых конструкциях - из пластмассы, в ширпотребе - из штампованного листа, в более дорогих конструкциях - литьё из алюминиевых сплавов. Обычно в раме присутствуют «окна» для свободного перемещения воздуха, но в высокочастотных динамиках это не обязательно. Рама должна быть очень жёсткой, не резонировать, быть удобной при установке динамика в корпус и радовать взор счастливого обладателя девайса.

О характеристиках,непосредственно влияющих на звук, расскажем в следующей статье.

Мы рассмотрели общие вопросы конструкции динамиков, теперь рассмотрим некоторые экзотические конструкции.

Форма диффузора динамика - правильный круг, как самый технологичный элемент.

Эллиптические формы - только для уменьшения габаритов, и не имеют каких-либо достоинств. А японцы сподобились сделать даже квадратный, который очень красиво вписывается в прямоугольный корпус. Материал диффузора - тончайший срез берёзы, выдержанной в саке*****. Истинные гурманы, безусловно, по достоинству оценивают сей девайс.

НАСА (которая в USA) для испытания спускаемых аппаратов «Джемини» соорудило динамик более метра в диаметре с МЕХАНИЧЕСКИМ ПРИВОДОМ. Впоследствии его передали дискотеке в Атланте. Звучание этого монстра потрясало до глубины души в прямом смысле этого слова.

Для высокочастотных динамиков (пищалок) диффузор как понятие практически отсутствует, звук воспроизводится сферическим колпачком, приклеенном к катушке. Для уменьшения массы колпачок делают из шёлка, иногда - из бериллия, наносят керамическое или даже алмазное напыление с целью получения прозрачного, как бриллиант, звучания.

Очень ограниченным тиражом выпускаются ЭЛЕКТРОСТАТИЧЕСКИЕ излучатели звука, которые уже нельзя назвать динамиками. В них роль диффузора выполняет тонкая плёнка с напылённой фольгой, и всё это помещено в гигантский конденсатор, поляризуемый напряжением 1000 Вольт. Подобная конструкция не требует специального акустического оформления и прекрасно звучит на частотах выше 100 Гц.

У нас в стране производились ИЗОДИНАМИЧЕСКИЕ излучатели - тоже плёнка с напылёнными проводниками, но всё находится между двумя многополюсными магнитами. Идеальный излучатель частот свыше 5 кГц.

Пьезокерамические излучатели и динамики-экзотика распространённая (см. бумбоксы с двух-трёхполосными излучателями). Моему коту не доводилось слышать ни одного пьезоизлучателя, претендующего на Hi-Fi звуковоспроизведение. Все их можно отнести к категории Hi-Hi.

И самый экзотический излучатель - ионофон. Демонстрировался на всесоюзной выставке творчества радиолюбителей где-то в 50-х годах прошлого века. Поток ионов воздуха модулировался звуковой частотой. Качество звучания - выше всяких похвал. Недостатки - большие габариты и вредная ионизация воздуха. Похоже, заграница временами пытается возродить подобные излучатели, но в серию они не пойдут - обычные динамики гораздо проще и дешевле, а для улавливания разницы в звучании нужны тренированные уши. О комплексе упражнений, развивающих уши, намечается специальная статья.

Взято с сайта журнала "Автозвук"

Контекст

В предыдущей части нашего разговора выяснилось, чем хороши различные типы акустического оформления и чем плохи. Казалось бы, теперь "цели ясны, за работу, товарищи.." Не тут-то было. Во-первых, акустическое оформление, в которое не установлен собственно динамик - всего лишь с той или иной степенью тщательности собранная коробка. А зачастую и собрать-то ее нельзя, пока не будет определено, какой динамик окажется в нее установлен. Во-вторых, и в этом главная потеха в проектировании и изготовлении автомобильных сабвуферов - характеристики сабвуфера немногого стоят вне контекста характеристик, хотя бы самых основных, автомобиля, где он будет работать. Есть еще и в-третьих. Мобильная акустическая система, одинаково приспособленная для любой музыки - редко достигаемый идеал. Грамотного установщика можно узнать обычно по тому, что, "снимая показания" с клиента, заказывающего аудиоустановку, он просит принести образцы того, что клиент будет слушать на заказанной им системе после ее завершения.

Как видно, факторов, влияющих на решение - очень много и свести все к простым и однозначным рецептам нет никакой возможности, что и превращает создание мобильных аудиоустановок в занятие сильно родственное искусству. Но некоторые общие ориентиры наметить все же можно.

Цифирь

Робких, ленивых и гуманитарно образованных спешу предупредить - формул практически не будет. Покуда возможно, попытаемся обойтись даже без калькулятора - забытым методом устного счета.

Сабвуферы - единственное звено автомобильной акустики, где измерение гармонии алгеброй - дело небезнадежное. Прямее скажу - без расчета спроектировать сабвуфер просто немыслимо. В качестве же исходных данных для этого расчета выступают параметры динамика. Какие? Да уж не те, которыми вас гипнотизируют в магазине, будьте уверены! Для расчета, даже самого приблизительного, характеристик низкочастотного громкоговорителя требуется знать его электромеханические параметры, которых - тьма. Это и резонансная частота, и масса подвижной системы, и индукция в зазоре магнитной системы и еще по меньшей мере два десятка показателей, понятных и не очень. Расстроены? Неудивительно. Так же расстроены оказались лет около двадцати назад два австралийца - Ричард Смолл и Невил Тиль. Они предложили вместо гор цифири использовать универсальный и довольно компактный набор характеристик, увековечивший, вполне заслуженно, их имена. Теперь, когда вы увидите в описании динамика таблицу, озаглавленную Thiel/Small parameters (или просто T/S) - вы знаете, о чем речь. А если такой таблицы вы не найдете - переходите к следующему варианту - этот - безнадежен.

Минимальный набор характеристик, которые вам понадобится выяснить - это:

Собственная резонансная частота динамика Fs

Полная добротность Qts

Эквивалентный объем Vas.

В принципе, есть и другие характеристики, которые полезно было бы знать, но этого, в общем-то, хватит. (сюда не включен диаметр динамика, поскольку его и так видно, без документации.) Если хотя бы одного параметра из "чрезвычайной тройки" нехватает, дело - швах. Ну а теперь - что все это означает.

Собственная частота - это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется - динамик подвешивают в воздухе на возможно большем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик - массы подвижной системы и жесткости подвески. Бытует мнение, что чем ниже резонансная частота, тем лучше выйдет сабвуфер. Это верно только отчасти, для некоторых конструкций излишне низкая частота резонанса - помеха. Для ориентира: низкая - это 20 - 25 Гц. Ниже 20 Гц - редкость. Выше 40 Гц - считается высокой, для сабвуфера.

Полная добротность. Добротность в данном случае- не качество изделия, а соотношение упругих и вязких сил, существующих в подвижной системе динамика вблизи частоты резонанса. Подвижная система динамика во много сродни подвеске автомобиля, где есть пружина и амортизатор. Пружина создает упругие силы, то есть накапливает и отдает энергию в процессе колебаний, а амортизатор - источник вязкого сопротивления, он ничего не накапливает, а поглощает и рассеивает в виде тепла. То же самое происходит при колебаниях диффузора и всего, что к нему прикреплено. Высокое значение добротности означает, что преобладают упругие силы. Это - как автомобиль без амортизаторов. Достаточно наехать на камешек и колесо начнет прыгать, ничем не сдерживаемое. Прыгать на той самой резонансной частоте, которая присуща этой колебательной системе.

Применительно к громкоговорителю это означает выброс частотной характеристики на частоте резонанса, тем больий, чем выше полная добротность системы. Самая высокая добротность, измеряемая тысячами - у колокола, который в результате ни на какой частоте, кроме резонансной звучать не желает, благо еще, что этого от него никто и не требует.

Популярный метод диагностики подвески машины покачиванием - не что иное как измерение добротности подвески кустарным способом. Если теперь привести подвеску в порядок, то есть прицепить параллельно пружине амортизатор, накопленная при сжатии пружины энергия уже не вся вернется обратно, а частично будет загублена амортизатором. Это - снижение добротности системы. Теперь опять вернемся к динамику. Ничего, что мы туда-сюда ходим? Это, говорят, полезно…С пружиной у динамика все, вроде бы, ясно. Это - подвеска диффузора. А амортизатор? Амортизаторов - целых два, работающих параллельно. Полная добротность динамика складывается из двух: механической и электрической. Механическая добротность определяется главным образом выбором материала подвеса, причем в основном - центрирующей шайбы, а не внешнего гофра, как иногда полагают. Больших потерь здесь обычно не бывает и вклад механической добротности в полную не превышает 10 - 15%. Основной вклад принадлежит электрической добротности. Самый жесткий амортизатор, работающий в колебательной системе динамика - это ансамбль из звуковой катушки и магнита. Будучи по своей природе электромотором, он как и полагается мотору, может работать как генератор и именно этим и занят вблизи частоты резонанса, когда скорость и амплитуда перемещения звуковой катушки - максимальны. Двигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой для такого генератора служит выходное сопротивление усилителя, то есть практически - ноль. Получается такой же электрический тормоз, каким снабжены все электрички. Там тоже при торможении тяговые двигатели заставляют работать в режиме генераторов, а нагрузка их - батареи тормозных сопротивлений на крыше.

Величина вырабатываемого тока будет, естественно, тем больше, чем сильнее магнитное поле, в котором движется звуковая катушка. Получается, что чем мощнее магнит динамика, тем ниже, при прочих равных, его добротность. Но, конечно, поскольку в формировании этой величины участвуют и длина провода обмотки, и ширина зазора в магнитной системе, окончательный вывод только на основании размера магнита было бы делать преждевременно. А предварительный - почему нет?…

Базовые понятия - низкой считается полная добротность динамика меньше 0,3 - 0,35; высокой - больше 0,5 - 0,6.

Эквивалентный объем. Большинство современных головок громкоговорителей основано на принципе "акустического подвеса".

У нас их иногда называют "компрессионными", что неправильно. Компрессионные головки - это совсем другая история, связанная с применением в роли акустического оформления рупоров.

Концепция акустического подвеса заключается в установке динамика в такой объем воздуха, упругость которого сопоставима с упругостью подвеса динамика. При этом получается, что в параллель к уже имеющейся в подвеске пружине поставили еще одну. Эквивалентным объемом будет при этом такой, при котором веновь появившаяся пружина равна по упругости уже имевшейся. Величина эквивалентного объема определяется жесткостью подвеса и диаметром динамика. Чем мягче подвес, тем больше будет величина воздушной подушки, присутствие которой начнет беспокоить динамик. То же происходит с изменением диаметра диффузора. Большой диффузор при одном и том же смещении будет сильнее сжимать воздух внутри ящика, тем самым испытывая большую ответную силу упругости воздушного объема.

Именно это обстоятельство зачастую определяет выбор размера динамика, исходя из имеющегося объема для размещения его акустического оформления. Большие диффузоры создают предпосылки для высокой отдачи сабвуфера, но требуют и больших объемов. Аргумент из репертуара комнаты в конце школьного коридора "а у меня больше" здесь надо применять осмотрительно.

У эквивалентного объема интересные родственные связи с резонансной частотой, без осознания которых легко промахнуться. Резонансная частота определяется жесткостью подвеса и массой подвижной системы, а эквивалентный объем - диаметром диффузора и той же жесткостью.

В результате возможна такая ситуация. Предположим, имеется два динамика одинакового размера и с одинаковой частотой резонанса. Но только у одного из них это значение частоты получилось вследствие тяжелого диффузора и жесткой подвески, а у другого - наоборот, легкого диффузора на мягком подвесе. Эквивалентный объем у такой парочки при всей внешней схожести может различаться очень существенно, и при установке в один и тот же ящик результаты будут драматически различны.

Итак, установив, что означают жизненно важные параметры, начнем наконец выбирать суженого. Модель будет такая - считаем, что вы определились, на основе, скажем, материалов предыдущей статьи этой серии, с типом акустического оформления и теперь надо выбрать для него динамик из сотен альтернатив. Освоив этот процесс, обратный, то есть выбор подходящего оформления под выбранный динамик, дастся вам без труда. В смысле - почти без труда.

Закрытый ящик

Как было сказано в приведенной статье, закрытый ящик - простейшее акустичнское оформление, но далеко не примитивное, напротив, имеющее, в особенности в автомобиле, ряд важнейших преимуществ перед другими. Популярность его в мобильных приложениях нисколько не угасает, потому с него и начнем.

Что происходит с характеристиками динамика при установке в закрытый ящик? Это зависит от одной-единственной величины - объема ящика. Если объем настолько велик, что динамик его практически не замечает, мы приходим к варианту бесконечного экрана. На практике такая ситуация достигается, когда объем ящика (или другого замкнутого объема, находящегося позади диффузора, а проще говоря, что там скрывать - багажника автомобиля) превышает эквивалентный объем динамика втрое или больше. Если такое соотношение выполняется, резонансная частота и полная добротность системы останутся практически такими же, какими они были у динамика. А значит - их и выбирать надо соответственно. Известно, что акустическая система будет обладать наиболее гладкой частотной характеристикой при величине полной добротности, равной 0,7. При меньших значениях улучшаются импульсные характеристики, но спад частотки начинается довольно высоко по частоте. При больших - частотная характеристика приобретает подъем вблизи резонанса, а переходные характеристики несколько ухудшаются. Если вы ориентируетесь на классическую музыку, джаз или акустические жанры - оптимальным выбором будет несколько передемпфированная система с добротностью 0,5 - 0,7. Для более энергичных жанров не повредит подчеркивание низов, которое достигается при добротности 0,8 - 0,9. И наконец, любители рэпа оттянутся по полной программе, если из система будет обладать добротностью, равной единице или даже выше. Значение 1,2 надо, пожалуй, признать предельным для любого жанра, претендующего на музыкальность.

Надо еще иметь в виду, что при установке сабвуфера в салоне машины происходит подъем низких частот, начиная с определенной частоты, обусловленной размерами салона. Типичные значения для начала подъема АЧХ 40 Гц для большой машины, вроде джипа или мини-вэна; 50 - 60 для средней, вроде восьмерки или "корейки"; 70 - 75 для маленькой, с Таврию.

Теперь ясно - для установки в режиме бесконечного экрана (или Freeair, если вас не смущает, что последнее название запатентовано Stillwater Designs) нужен динамик с полной добротностью не ниже 0,5, а то и выше и резонансной частотой никак не ниже герц эдак 40 - 60, в зависимости от того, во что будете ставить. Такие параметры обычно означают довольно жесткий подвес, только это и спасает динамик от перегрузки в условиях отсутствия "акустической поддержки" со стороны закрытого объема. Вот пример - фирма Infinity выпускает в сериях Reference и Kappa варианты одних и тех же головок с индексами br (bass reflex) и ib (infinite baffle).Параметры Тиля-Смолла, например, у десятидюймовой Reference различаются так:

Параметр T/S 1000w.br 1000w.ib

Fs 26 Гц 40 Гц

Vas 83 л 50 л

Видно, что вариант ib по резонансной частоте и добротности - готовенький для работы "как есть", а судя и по частоте резонанса и по эквивалентному объему - эта модификация намного жестче другой, оптимизированной для работы в фазоинверторе, а, значит, более вероятно выживет в нелегких условиях Freeair.

А что случится, если, не обратив внимания на маленькие буковки, вы загоните в эти условия похожий, как две капли воды динамик с индексом br? А вот что: из-за низкой добротности частотная характеристика начнет заваливаться уже на частотах около 70 - 80 Гц, а ничем не сдерживаемая "мягкая" головка будет себя чувствовать очень неуютно на нижнем краю диапазона, причем перегрузить ее там - проще простого.

Итак, договорились:

Для применения в режиме "бесконечного экрана" надо выбирать динамик с высокой полной добротностью (не меньше 0,5) и резонансной частотой (не ниже 45 Гц), уточнив эти требования в зависимости от типа преимущественного музыкального материала и размера салона.

Теперь о "небесконечном" объеме. Если поставить динамик в объем, сопоставимый с его эквивалентным объемом, система приобретет характеристики, существенно отличающиеся от тех, с которыми в эту систему явился динамик. Прежде всего при установке в закрытый объем возрастет резонансная частота. Жесткость-то увеличилась, а масса - осталась прежней. Возрастет и добротность. Судите сами - приставив в помощь жесткости подвеса жесткость небольшого, то есть неподатливого воздушного объема, мы тем самым как бы поставили вторую пружину, а амортизатор оставили старый.

С уменьшением объема добротность системы и ее резонансная частота растут одинаково. Значит, если мы увидели динамик с добротностью, скажем, 0,25, а хотим иметь систему с добротностью, скажем, 0,75, то резонансная частота тоже увеличится втрое. А какая она там у динамика? 35 Гц? Так значит, в правильном, с точки зрения формы частотной характеристики, объеме она окажется 105 Гц, а это, знаете ли, уже не сабвуфер. Значит - на подходит. Вот видите, и калькулятор не понадобился. Смотрим другой. Резонансная частота 25 Гц, добротность 0,4. Получается система с добротностью 0,75 и частотой резонанса где-то около 47 Гц. Вполне достойно. Попробуем тут же, не отходя от прилавка, прикинуть, какого объема понадобится ящик. Написано, что Vas = 160 л (или же 6 cu.ft, что более вероятно).

(Тут бы формулу написать - она простенькая, но нельзя - обещал). Поэтому для расчетов у прилавка дам шпаргалку: скопируйте и положите в бумажник, если покупка басового динамика входит в планы вашего шопинга:

Резонансная частота и добротность возрастут в Если объем ящика составляет от Vas

1,4 раза 1

1,7 раза 1/2

2 раза 1/3

3 раза 1/8

У нас - примерно вдвое, так что получается ящичек объемом литров 50 - 60. Многовато будет….Давайте следующий. И так далее.

Получается, что для того, чтобы вышло мыслимое акустическое оформление, параметры динамика мало того, что должны находиться в каком-то определенном коридоре значений, но еще и быть увязаны между собой.

Эту увязку опытные люди свели в показатель Fs/Qts.

Если величина Fs/Qts составляет 50 или меньше, динамик рожден для закрытого ящика. Необходимый объем ящика при этом будет тем меньше, чем ниже Fs или чем меньше Vas.

По внешним данным "прирожденных затворников" можно узнать по тяжелым диффузорами и мягким подвесам (что дает низкую резонансную частоту), не очень большим магнитам (чтобы добротность была не слишком низкой), длинным звуковым катушкам (поскольку ход диффузора у динамика, работающего в закрытом ящике, может достигать довольно больших значений).

Фазоинвертор

Другой тип популярного акустического оформления - фазоинвертор, при всем горячем желании у прилавка посчитать нельзя, даже приблизительно. Но прикинуть пригодность для него динамика - можно. А про расчет мы вообще будем говорить отдельно.

Резонансная частота системы этого типа определяется уже не одной только резонансной частотой динамика, но и настройкой фазоинвертора. Это же относится и к добротности системы, которая может существенно меняться с изменением длины тоннеля даже при неизменном объеме корпуса. Поскольку фазоинвертор может быть, в отличие от закрытого ящика, настроен на частоту, близкую или даже ниже, чем у динамика, собственной резонансной частоте головки "позволено" быть выше, чем в предыдущем случае. Это означает, при удачном выборе, более легкий диффузор и, как следствие, улучшение импульсных характеристик, в чем фазоинвертор нуждается, поскольку его "врожденные" переходные характеристики не из лучших, хуже, чем у закрытого ящика, по крайней мере. Зато добротность желательно иметь возможно ниже, не больше 0,35. Сводя это в тот же показатель Fs/Qts, формула выбора динамика для фазоинвертора выглядит просто:

Для работы в фазоинверторе подходят динамики, у которых показатель Fs/Qts составляет 90 и больше.

Внешние признаки фазоинверсной породы: легкие диффузоры и мощные магниты.

Бандпассы (совсем коротко)

Полосовые громкоговорители, при всех своих громких достоинствах (это в смысле наибольшей эффективности, в сравнении с другими типами) - наиболее сложны в расчете и изготовлении, а согласование их характеристик с внутренней акустикой автомобиля при недостаточном опыте может превратиться в кромешный ад, поэтому с этим видом акустического оформления лучше идти по камушкам и воспользоваться рекомендациями изготовителей динамиков, хоть это и связывает руки. Однако, если руки все же находятся в развязанном состоянии и чешутся попробовать: для одиночных бандпассов подходят практически те же динамики, что и для фазоинверторов, а для двойных или квазиполосовых - они же или, что более желательно, головки с показателем Fs/Qts равным 100 и выше.

Полезные темы:

  • 19.01.2006 15:47 # 0+

    Если Вы впервые на нашем Форуме:

    1. Обратите внимание на список полезных тем в первом сообщении.
    2. Термины и наиболее популярные модели в сообщениях подсвечиваются быстрыми подсказками и ссылками на соответствующие статьи в МагВикипедии и Каталоге.
    3. Для изучения Форума не обязательно регистрироваться - практически весь профильный контент, включая файлы, картинки и видео, открыты для гостей.

    С наилучшими пожеланиями,
    Администрация Форума автозвука Магнитола

  • Параметры Thiele & Small

    Это группа параметров, введенных A.N. Thiele и позднее R.H. Small, при помощи которых можно полностью описать электрические и механические характеристики средне - и низкочастотных головок громкоговорителей, работающих вкомпрессионной области, т.е. тогда, когда в диффузоре не возникают продольные колебания и его можно уподобить поршню.

    Fs (Гц) - частота собственного резонанса головки громкоговорителя в открытом пространстве. В этой точке ее импеданс максимален.

    Fc (Гц) - частота резонанса акустической системы для закрытого корпуса.

    Fb (Гц) - частота резонанса фазоинвертора.

    F3 (Гц) - частота среза, на которой отдача головки снижается на 3 dB.

    Vas (куб.м) - эквивалентный объем. Это возбуждаемый головкой закрытый объем воздуха, имеющий гибкость, равную гибкости Cms подвижной системы головки.

    D (м) - эффективный диаметр диффузора.

    Sd (кв.м) - эффективная площадь диффузора (примерно 50-60% конструктивной площади).

    Xmax (м) - максимальное смещение диффузора.

    Vd (куб.м) - возбуждаемый объем (произведение Sd на Xmax).

    Re (Ом) - сопротивление обмотки головки постоянному току.

    Rg (Ом) - выходное сопротивление усилителя с учетом влияния соединительных проводов и фильтров.

    Qms (безразмерная величина) - механическая добротность головки громкоговорителя на резонансной частоте (Fs), учитывает механические потери.

    Qes (безразмерная величина) - электрическая добротность головки громкоговорителя на резонансной частоте (Fs), учитывает электрические потери.

    Qts (безразмерная величина) - полная добротность головки громкоговорителя на резонансной частоте (Fs), учитывает все потери.

    Qmc (безразмерная величина) - механическая добротность акустической системы на резонансной частоте (Fs), учитывает механические потери.

    Qec (безразмерная величина) - электрическая добротность акустической системы на резонансной частоте (Fs), учитывает электрические потери.

    Qtc (безразмерная величина) - полная добротность акустической системы на резонансной частоте (Fs), учитывает все потери.

    Ql (безразмерная величина) - добротность акустической системы на частоте (Fb), учитывающая потери перетекания.

    Qa (безразмерная величина) - добротность акустической системы на частоте (Fb), учитывающая потери поглощения.

    Qp (безразмерная величина) - добротность акустической системы на частоте (Fb), учитывающая прочие потери.

    N0 (безразмерная величина, иногда %) - относительная эффективность (К.П.Д.) системы.

    Cms (м/Н) - гибкость подвижной системы головки громкоговорителя(смещение под воздействием механической нагрузки).

    Mms (кГ) - эффективная масса подвижной системы (включает массу диффузора и колеблющегося вместе с ним воздуха).

    Rms (кГ/с) - активное механическое сопротивление головки.

    B (Тл) - индукция в зазоре.

    L (м) - длина проводника звуковой катушки.

    Bl (м/Н) - коэффициент магнитной индукции.

    Pa - акустическая мощность.

    Pe - электрическая мощность.

    C=342 м/с - скорость звука в воздухе в нормальных условиях.

    P=1.18 кГ/м^3 - плотность воздуха в нормальных условиях.

    Le - индуктивность катушки.

    BL – значение плотности магнитного потока, умноженный на длину катушке.

    Spl – уровень звукового давления в дБ.

  • Re: Параметры Тиля-Смолла и акустическое оформление динамика.

    Классная программа BassBox 6.0 PRO для расчёта акустического оформления динамика 12мб, серийник внутри в файле *.txt:

    Программа имеет огромную базу данных по параметрам динов большого количества производителей, умеет считать объём с учётом толщины стенок. Вообщем очень удобная.

  • Параметры Смолла-Тиле

    Параметры Смолла-Тиле

    Вплоть до 1970 года не существовало удобных и доступных, принятых в качестве стандартных для всей индустрии методов получения сравнительных данных о работе громкоговорителей. Отдельные тесты, проводимые лабораториями, были слишком дороги и трудоемки. При этом методы получения сравнительных данных о громкоговорителях были нужны как покупателям для выбора нужной модели, так и производителям аппаратуры для более точного описания своей продукции и аргументированного сравнения различных устройств.
    Конструкция громкоговорителяВ начале семидесятых на конференции AES был представлен доклад, авторами которого были Невилл Тиле (Neville Thiele) и Ричард Смолл (Richard Small). Тиле был главным инженером по разработкам и развитию в Австралийской вещательной комиссии (Australian Broadcasting Commission). В то время он заведовал Федеральной инженерной лабораторией (Federal Engineering Laboratory) и занимался анализом работы аппаратуры и систем для передачи аудио- и видеосигналов. Смолл учился в аспирантуре Школы инженеров университета Сиднея.
    Целью Тиле и Смолла было показать, как выведенные ими параметры помогают подобрать кабинет к конкретному громкоговорителю. Однако в результате получилось, что эти измерения дают значительно больше информации: по ним можно сделать гораздо более глубокие выводы о том, как работает громкоговоритель, чем на основе привычных данных о размере, максимальной выходной мощности или чувствительности.
    Перечень параметров, получивших название «Параметры Смолла-Тиле»: Fs, Re, Le, Qms, Qes, Qts, Vas, Cms, Vd, BL, Mms, Rms, EBP, Xmax/Xmech, Sd, Zmax, рабочий диапазон воспроизводимых частот (Usable Freq. Range), номинальная мощность (Power Handling), чувствительность (Sensitivity).

    Fs

    Re

    Этот параметр описывает сопротивление громкоговорителя по постоянному току, измеренное с помощью омметра. Его часто называют DCR. Значение этого сопротивления почти всегда меньше номинального сопротивления громкоговорителя, что беспокоит многих покупателей, так как они боятся, что усилитель будет перегружен. Однако, благодаря тому что индуктивность громкоговорителя растет с увеличением частоты, маловероятно, что постоянное сопротивление будет влиять на нагрузку.

    Le

    Этот параметр соответствует индуктивности звуковой катушки, измеренной в мГн (миллигенри). По установленному стандарту измерение индуктивности производится на частоте 1 кГц. При повышении частоты будет происходить рост полного сопротивления выше значения Re, так как звуковая катушка работает как индуктор. В результате этого полное сопротивление (Impedance) громкоговорителя не является постоянной величиной. Оно может быть представлено в виде кривой, которая меняется с изменением частоты входного сигнала. Максимальное значение полного сопротивления (Zmax) имеет место на резонансной частоте (Fs).

    Q-параметры

    Vas/Cms

    Параметр Vas говорит о том, каким должен быть объем воздуха, который при сжатии до объема в один кубический метр оказывает такое же сопротивление, что и система подвеса (эквивалентный объем). Коэффициент гибкости системы подвеса для данного громкоговорителя обозначается как Cms. Vas является одним из наиболее сложных для измерения параметров, так как давление воздуха изменяется в соответствии с влажностью и температурой и, таким образом, требует для измерения очень высокотехнологичную лабораторию. Cms измеряется в метрах на ньютон (м/Н) и представляет собой силу, с которой механическая система подвеса сопротивляется движению диффузора. Другими словами, Cms соответствует измерению жесткости механического подвеса громкоговорителя. Соотношение Cms и Q-параметров можно сравнить с выбором между повышенным комфортом и улучшенными ходовыми качествами, который делают производители автомобилей. Если рассматривать пики и минимумы аудиосигнала как неровности автомобильной дороги, то система подвеса громкоговорителя аналогична рессорам автомобиля - в идеале она должна выдерживать очень быструю езду по дороге, заваленной крупными валунами.

    Vd

    Этот параметр обозначает максимальный объем воздуха, который может быть вытолкнут диффузором (Peak Diaphragm Displacement Volume). Он вычисляется путем умножения Xmax (максимальной длины той части звуковой катушки, которая выходит за пределы магнитного зазора) на Sd (площадь рабочей поверхности диффузора). Vd измеряется в кубических сантиметрах. Субвуферы обычно характеризуются самыми высокими значениями Vd.

    BL

    Выражаемый в тесла на метр, этот параметр характеризует движущую силу громкоговорителя. Другими словами, BL дает понять, насколько большую массу может «поднять» громкоговоритель. Измеряется этот параметр следующим образом: на диффузор воздействует определенная сила, направленная внутрь громкоговорителя, и при этом измеряется сила тока, нужная для того, чтобы противодействовать приложенной силе - масса в граммах делится на силу тока в амперах. Высокое значение параметра BL говорит об очень большой силе громкоговорителя.

    Mms

    Этот параметр является объединением веса диффузора в сборе и массы воздушного потока, сдвигаемого диффузором громкоговорителя во время работы. Вес диффузора в сборе равен сумме веса самого диффузора, центрирующей шайбы и звуковой катушки. При вычислении массы воздушного потока, смещаемого диффузором, используется объем воздуха, соответствующий параметру Vd.

    Rms

    Этот параметр описывает потери на механическое сопротивление системы подвеса громкоговорителя. Он представляет собой измерение абсорбирующих качеств подвеса громкоговорителя и измеряется в Н і с/м.

    EBP

    Этот параметр равен Fs, деленному на Qes. Он используется во многих формулах, связанных с конструированием кабинетов для акустических систем, и в частности, чтобы определить, какой кабинет лучше выбрать для данного громкоговорителя - закрытый или фазионверторной конструкции. Когда значение EBP приближается к 100, это означает, что такой громкоговоритель лучше всего подойдет для работы в фазоинверторном корпусе. В случае, если EBP близок к 50, данный громкоговоритель лучше установить в закрытый корпус. Однако это правило является лишь отправной точкой при создании акустической системы и допускает исключения.

    Xmax/Xmech

    Параметр определяет максимальное линейное отклонение. Выходной сигнал громкоговорителя становится нелинейным, когда звуковая катушка начинает выходить из магнитного зазора. Хотя и система подвеса может создавать нелинейность в выходном сигнале, искажения начинают значительно увеличиваться в тот момент, когда число витков звуковой катушки в магнитном зазоре начинает уменьшаться. Для определения Xmax нужно вычислить длину части звуковой катушки, вышедшей за пределы верхнего среза магнита, и разделить ее пополам. Этот параметр используется для определения максимального звукового давления (SPL), которое может обеспечить громкоговоритель, сохраняя при этом линейность сигнала, то есть нормированное значение КНИ.
    При определении Xmech проводятся измерения длины хода звуковой катушки до возникновения одной из следующих ситуаций: либо разрушается центрирующая шайба, либо звуковая катушка упирается в предохраняющую заднюю крышку, либо звуковая катушка выходит из магнитного зазора, либо начинают играть роль другие физические ограничения диффузора. Наименьшая из полученных длин хода катушки делится пополам и полученное значение принимается за максимальное механическое смещение диффузора.

    Sd

    Этот параметр соответствует площади рабочей поверхности диффузора. Измеряется в см2.

    Zmax

    Этот параметр соответствует полному сопротивлению громкоговорителя на резонансной частоте.

    Рабочий диапазон воспроизводимых частот (Usable frequency range)

    Производители используют разные способы для измерения рабочего диапазона частот. Многие методы считаются приемлемыми, однако они приводят к разным результатам. По мере повышения частоты внеосевое излучение громкоговорителя уменьшается пропорционально диаметру. В определенной точке оно становится остронаправленным. В таблице показана зависимость частоты, на которой имеет место этот эффект, от размера громкоговорителя.

    File:///C:/Documents%20and%20Settings/artemk01klg/Desktop/1.jpg

    Номинальная мощность (Power handling)

    Это очень важный параметр при выборе громкоговорителя. Необходимо точно знать, что излучатель выдержит мощность подводимого к нему сигнала. Поэтому нужно подобрать такой громкоговоритель, который сможет с запасом выдержать подводимую к нему мощность. Определяющим критерием того, какую мощность будет иметь громкоговоритель, является его способность отводить тепло. Основными конструктивными особенностями, влияющими на эффективный отвод тепла, являются размер звуковой катушки, размер магнита, вентиляция конструкции, а также высокотехнологичные современные материалы, использованные в конструкции звуковой катушки. Большие размеры звуковой катушки и магнита обеспечивают более эффективное рассеивание тепла, а вентиляция обеспечивает охлаждение конструкции.
    При вычислении мощности громкоговорителя помимо способности выдерживать нагрев важны также механические свойства громкоговорителя. Ведь устройство может выдерживать нагрев, возникающий при подведении мощности в 1 кВт, но еще до достижения этого значения оно выйдет из строя из-за конструктивных повреждений: звуковая катушка будет упираться в заднюю стенку или звуковая катушка выйдет из магнитного зазора, диффузор деформируется и т. д. Наиболее часто подобные поломки случаются при воспроизведении слишком мощного НЧ-сигнала на большой громкости. Чтобы избежать поломок, необходимо знать реальный диапазон воспроизводимых частот, параметр Xmech, а также номинальную мощность.

    Чувствительность (Sensitivity)

    Этот параметр является одним из важнейших во всей спецификации громкоговорителя. Он позволяет понять, насколько эффективно и с какой громкостью аппарат будет воспроизводить звук при подведении сигнала той или иной мощности. К сожалению, производители громкоговорителей используют разные методы для вычисления этого параметра - единого установленного не существует. При определении чувствительности измеряют уровень звукового давления на расстоянии одного метра при подведении к громкоговорителю мощности 1 Вт. Проблема состоит в том, что иногда расстояние в 1 м рассчитывается от пылезащитного колпачка, а иногда от подвеса громкоговорителя. Из-за этого определить чувствительность громкоговорителей бывает довольно сложно.

    Взято с

  • - Как! У тебя есть бабушка, которая угадывает три карты сряду, а ты до сих пор не перенял у ней ее кабалистики?
    А.С. Пушкин, «Пиковая дама»

    Сегодня речь пойдёт о том, что важно знать об акустике на самом деле. А именно - о знаменитых параметрах Тиля - Смолла, знание которых - залог выигрыша в азартной игре в автозвук. Без шельмовства и кабалистики.

    Один выдающийся математик, по преданию, читая студентам лекции, говорил: «А сейчас мы приступим к доказательству теоремы, имя которой я имею честь носить». Кому выпала честь носить имена параметров Тиля и Смолла? Вспомним и это. Первым в связке идёт Альберт Невил Тиль (в оригинале A. Neville Thiele, «А» почти никогда не расшифровывается). И по возрасту, и по библиографии. Тилю сейчас 84 года, а когда ему было 40, он опубликовал историческую работу, в которой впервые было предложено проводить расчёты характеристик громкоговорителей на основе единого набора параметров, причём удобным и воспроизводимым образом.

    Там, в работе 1961 года, было, в частности, сказано: «Характеристики громкоговорителя в области низких частот могут быть адекватно описаны с помощью трёх параметров: резонансной частоты, объёма воздуха, эквивалентного акустической гибкости громкоговорителя, и отношения электрического сопротивления к сопротивлению движению на резонансной частоте. По этим же параметрам определяется и электроакустическая эффективность. Я обращаюсь к производителям громкоговорителей с просьбой публиковать эти параметры как часть основных сведений об их изделиях».

    Просьба Невилла Тиля была услышана индустрией только через десятилетие, в это время Тиль уже работал вместе с Рихардом Смоллом, уроженцем Калифорнии. По-калифорнийски пишется Richard Small, но почему-то уважаемый доктор предпочитает немецкий вариант произношения собственного имени. Смоллу в этом году исполняется 70, между прочим - юбилей поважнее многих. В начале семидесятых Тиль и Смолл окончательно довели до ума предложенный ими подход к расчёту громкоговорителей.

    Сейчас Невилл Тиль - почётный профессор одного из университетов у себя на родине, в Австралии, а последняя профессиональная позиция Д-ра Смолла, за которой нам удалось уследить - главный инженер департамента автомобильной аудиотехники Harman-Becker. Ну и, само собой, оба - в составе руководства международного общества инженеров-акустиков (Audio Engineering Society). В общем, оба живы здоровы.

    Слева Тиль, справа - Смолл, в порядке вклада в электроакустику. Между прочим, снимок редкий, мэтры не любили фотографироваться

    Вешать или не вешать?

    Образное определение условий измерения Fs как резонансной частоты динамика, висящего в воздухе, породило заблуждение, что так и надо эту частоту измерять, и энтузиасты норовили действительно подвешивать динамики на проволоках и верёвках. Измерениям параметров акустики будет посвящён отдельный выпуск «ВВ», а то и не один, здесь же отмечу: в грамотных лабораториях динамики при измерениях зажимают в тиски, а не подвешивают к люстре.

    Итоги вычислительного эксперимента, которые помогут желающим понять, как величины электрической и механической добротности выражаются в импедансных кривых. Мы взяли полный набор электромеханических параметров реально существующего динамика, а потом стали изменять некоторые из них. Сперва - механическую добротность, как будто заменяли материал гофра и центрирующей шайбы. Потом - электрическую, для этого уже понадобилось изменять характеристики привода и подвижной системы. Вот что получилось:

    Реальная импедансная кривая низкочастотного динамика. По ней вычисляются два из трёх главных параметров

    Кривые импеданса для разных значений полной добротности, при этом электрическая Qes одна и та же, равная 0,5, а механическая изменяется от 1 до 8. Полная добротность Qts изменяется вроде бы не сильно, а высота горба на графике импеданса - сильно, и очень, при этом чем меньше Qms, тем он становится острее

    Зависимость звукового давления от частоты при тех же значениях Qts. При измерении звукового давления важна только полная добротность Qts, поэтому совершенно непохожим кривым импеданса соответствуют не такие уж разные кривые звукового давления от частоты

    Те же значения Qts, но теперь всюду Qms = 4, а Qes меняется так, чтобы выйти на те же значения Qts. Значения Qts те же, а кривые совсем другие и различаются между собой намного меньше. Нижние, красные кривые получены для тех значений, которые нельзя было получить в первом опыте при фиксированной Qes = 0,5

    Кривые звукового давления для разных Qts, полученных изменением Qes. Четыре верхние кривые по форме - точно такие же, как когда мы меняли Qms, их форма определяется значениями Qts, а они остались прежними. Нижние, красные кривые, полученные для Qts больше 0,5, разумеется, другие, и на них начинает расти горб, обусловленный повышенной добротностью.

    А вот теперь обратите внимание: дело не только в том, что при высоких Qts на характеристике появляется горб, при этом снижается чувствительность динамика на частотах выше резонансной. Объяснение простое: при прочих равных Qes может возрастать только с ростом массы подвижной системы или с уменьшением мощности магнита. И то и другое ведёт к падению чувствительности на средних частотах. Так что горб на резонансной частоте - это, скорее, следствие провала на частотах выше резонансной. В акустике ничего бесплатного не бывает...

    Вклад младшего партнёра

    Между прочим: основоположник метода А.Н. Тиль намеревался учитывать в расчётах только электрическую добротность, полагая (справедливо для своего времени), что доля механических потерь пренебрежимо мала по сравнению с потерями, вызванными работой «электрического тормоза» динамика. Вклад младшего партнёра, не единственный, впрочем, заключался в учёте Qms, теперь это стало важным: в современных головках используются материалы с повышенными потерями, которых не было в начале 60-х, и нам попадались динамики, где величина Qms составляла всего лишь 2 - 3, при электрической под единицу. При таких делах не учитывать механические потери было бы ошибкой. И особенно важным это стало с внедрением феррожидкостного охлаждения в ВЧ-головках, там из-за демпфирующего действия жидкости доля Qms в полной добротности становится решающей, а пик импеданса на частоте резонанса становится почти не виден, как на первом графике нашего вычислительного эксперимента.

    Три карты, открытые Тилем и Смоллом

    1. Fs - частота основного резонанса динамика без всякого корпуса. Характеризует только сам динамик, а не готовую акустическую систему на его базе. При установке в любой объём может только возрастать.

    2. Qts - полная добротность динамика, безразмерная величина, характеризующая относительные потери в динамике. Чем она ниже, тем больше подавлен резонанс излучения и тем выше пик сопротивления на импедансной кривой. При установке в закрытый ящик возрастает.

    3. Vas - эквивалентный объём динамика. Равен объёму воздуха с такой же жёсткостью, что и у подвеса. Чем жёстче подвес, тем меньше Vas. При одной и той же жёсткости Vas растёт с ростом площади диффузора.

    Две половинки, составляющие карту №2

    1. Qes - электрическая составляющая полной добротности, характеризует мощность электрического тормоза, препятствующего раскачке диффузора вблизи резонансной частоты. Обычно чем мощнее магнитная система, тем сильнее «тормоз» и тем меньше численно величина Qes.

    2. Qms - механическая составляющая полной добротности, характеризует потери в упругих элементах подвеса. Потерь здесь намного меньше, чем в электрической составляющей, и численно Qms гораздо больше Qes.

    Почём звенит колокол

    Что общего у колокола и громкоговорителя? Ну, то, что оба звучат, - это очевидно. Важнее, что и то и другое - колебательные системы. А в чём различие? Колокол, как по нему ни долби, будет звучать на единственной частоте, предписанной каноном. А внешне не так уж непохожий на него динамик - в широком диапазоне частот, и может, при желании, одновременно изобразить и звон колокола, и пыхтение звонаря. Так вот: два из трёх параметров Тиля - Смолла как раз и описывают количественно это различие.

    Только надо твёрдо запомнить, а лучше - перечитать цитату из основоположника в историко-биографической справке. Там сказано: «на низких частотах». К тому, как поведёт себя динамик на частотах более высоких, Тиль, Смолл и их параметры никакого отношения не имеют и никакой ответственности за это не несут. Какие частоты для динамика низкие, а какие - нет? А об этом и говорит первый из тройки параметров.

    Карта первая, измеряемая в герцах

    Итак: параметр Тиля - Смолла №1 - собственная резонансная частота динамика. Обозначается всегда Fs, независимо от языка публикации. Физический смысл предельно прост: раз динамик - колебательная система, значит, должна быть частота, на которой диффузор будет колебаться, будучи предоставлен сам себе. Как колокол после удара или струна после щипка. При этом имеется в виду, что динамик абсолютно «голый», не установлен ни в какой корпус, как бы висит в пространстве. Это важно, поскольку нас интересуют параметры собственно динамика, а не того, что его окружает.

    Диапазон частот вокруг резонансной, две октавы вверх, две октавы вниз - это и есть область, где действуют параметры Тиля - Смолла. Для сабвуферных головок, ещё не установленных в корпус, Fs может составлять от 20 до 50 Гц, у мидбасовых динамиков от 50 (басовитые «шестёрки») до 100 - 120 («четвёрки»). У диффузорных среднечастотников - 100 - 200 Гц, у купольных - 400 - 800, у пищалок - 1000 - 2000 Гц (бывают исключения, очень редкие).

    Как определяют собственную резонансную частоту динамика? Нет, как чаще всего определяют - ясно, читают в сопроводительной документации или в отчёте о тесте. Ну а как её изначально узнали? С колоколом было бы проще: дал по нему чем-нибудь и измерил частоту производимого гудения. Динамик же в явной форме ни на какой частоте гудеть не будет. То есть он хочет, но ему не даёт присущее его конструкции затухание колебаний диффузора. В этом смысле динамик очень сходен с автомобильной подвеской, и этой аналогией я пользовался не раз и ещё буду. Что произойдёт, если качнуть на подвеске автомобиль с пустыми амортизаторами? Он хоть несколько раз, но качнётся на собственной резонансной частоте (где есть пружина, там будет и частота). Амортизаторы, сдохшие только отчасти, остановят колебания после одного-двух периодов, а исправные - после первого же качка. В динамике амортизатор главнее пружины, причём здесь их даже два.

    Первый, более слабый, работает благодаря тому, что происходит потеря энергии в подвесе. Не случайно гофр делается из специальных сортов каучука, мячик из такого материала от пола почти не будет отскакивать, специальная пропитка с большим внутренним трением выбирается и для центрирующей шайбы. Это как бы механический тормоз колебаний диффузора. Второй, гораздо более мощный - электрический.

    Вот как он работает. Звуковая катушка динамика - его мотор. В ней течёт переменный ток от усилителя, и катушка, находящаяся в магнитном поле, начинает двигаться с частотой подведенного сигнала, двигая, понятно, и всю подвижную систему, затем она и здесь. Но ведь катушка, двигающаяся в магнитном поле - это генератор. Который будет вырабатывать тем больше электричества, чем сильнее движется катушка. И когда частота станет приближаться к резонансной, на которой диффузор «хочет» колебаться, амплитуда колебаний возрастёт, и напряжение, производимое звуковой катушкой, будет расти. Достигнув максимума точно на резонансной частоте. Какое это отношение имеет к торможению? Пока никакого. Но представьте себе, что выводы катушки замкнули между собой. Теперь уже по ней потечёт ток и возникнет сила, которая по школьному правилу Ленца будет препятствовать движению, его породившему. А ведь звуковая катушка в реальной жизни замкнута на выходное сопротивление усилителя, близкое к нулю. Получается как бы электрический тормоз, приспосабливающийся к обстановке: чем с большим размахом пытается ходить туда-сюда диффузор, тем больше этому препятствует встречный ток в звуковой катушке. У колокола тормозов нет, кроме затухания вибраций в его стенках, а в бронзе - какое затухание...

    Карта вторая, не измеряемая ни в чём

    Мощность тормозов динамика численно выражается во втором параметре Тиля - Смолла. Это - полная добротность динамика, обозначается Qts. Выражается численно, но не буквально. В смысле, чем мощнее тормоза, тем меньше величина Qts. Отсюда и название «добротность» в русском (или quality factor в английском, из которого возникло обозначение этой величины), что это как бы оценка качества колебательной системы. Физически добротность - отношение упругих сил в системе к вязким, иначе - к силам трения. Упругие силы сохраняют энергию в системе, попеременно перегоняя энергию из потенциальной (сжатая или растянутая пружина или же подвес динамика) в кинетическую (энергия движущегося диффузора). Вязкие норовят энергию любого движения превратить в тепло и безвозвратно рассеять. Высокая добротность (а у того же колокола она будет измеряться десятками тысяч) означает, что упругих сил намного больше, чем сил трения (вязких, это одно и то же). Это же означает, что на каждое колебание в тепло будет переходить только малая часть энергии, запасённой в системе. Поэтому, кстати, добротность - единственная величина в тройке параметров Тиля - Смолла, не имеющая размерности, это отношение одних сил к другим. Как рассеивает энергию колокол? Через внутреннее трение в бронзе, главным образом, потихоньку. Как это делает динамик, у которого добротность намного меньше, а значит, темпы потери энергии гораздо выше? Двумя способами, по числу «тормозов». Часть рассеивается через внутренние потери в упругих элементах подвеса, и эту долю потерь можно оценить отдельной величиной добротности, она носит название механической, обозначается Qms. Вторая, большая часть рассеивается в виде тепла от тока, проходящего по звуковой катушке. Тока, ей же выработанного. Это - электрическая добротность Qes. Суммарное действие тормозов определялось бы очень легко, если бы в ходу были не величины добротности, а наоборот, величины потерь. Мы бы их просто сложили. А раз мы имеем дело с величинами, обратными потерям, то и складывать придётся обратные величины, поэтому и выходит, что 1/Qts = 1/Qms + 1/Qes.

    Типичные значения добротностей: механическая - от 5 до 10. Электрическая - от 0,2 до 1. Поскольку в дело идут обратные величины, то получается, что мы суммируем механический вклад в потери порядка 0,1 - 0,2 с электрическим, составляющим от 1 до 5. Ясно, что итог будет определяться в основном электрической добротностью, то есть главный тормоз динамика - электрический.

    Так как же вырвать у динамика имена «трёх карт»? Ну хотя бы двух первых, до третьей ещё доберёмся. Пистолетом, как Германн, грозить бесполезно, динамик не старуха. На помощь приходит всё та же звуковая катушка, пламенный мотор динамика. Ведь мы уже осознали: пламенный мотор подрабатывает и пламенным генератором. И в этом качестве как бы ябедничает об амплитуде колебаний диффузора. Чем большее напряжение появится на звуковой катушке как результат её колебаний вместе с диффузором, тем больше, значит, размах колебаний, тем ближе, значит, мы к резонансной частоте.

    Как это напряжение измерить, притом что к звуковой катушке подведен сигнал от усилителя? То есть как разделить подведенное к мотору от выработанного генератором, это же на одних и тех же выводах? А не надо разделять, надо измерить получающуюся сумму.

    Для этого поступают так. Динамик присоединяют к усилителю с возможно большим выходным сопротивлением, в реальной жизни это означает: последовательно с динамиком включают резистор с номиналом намного, в сто, как минимум, раз больше номинального сопротивления динамика. Скажем, 1000 Ом. Теперь при работе динамика звуковая катушка будет вырабатывать противо-ЭДС, вроде как для работы электрического тормоза, но торможения не произойдёт: выводы катушки замкнуты между собой через очень большое сопротивление, ток мизерный, тормоз - никудышный. Зато напряжение, по правилу Ленца противоположное по полярности подведенному («порождающему движение»), сложится с ним в противофазе, и если в этот момент измерить кажущееся сопротивление звуковой катушки, то покажется, что оно очень большое. На самом деле при этом противо-ЭДС не даёт току от усилителя беспрепятственно протекать по катушке, прибор это истолковывает как возросшее сопротивление, а как ещё?

    Через измерение импеданса, того самого «кажущегося» (а на деле - комплексного, со всякими активными и реактивными составляющими, сейчас об этом не время) сопротивления и открываются две карты из трёх. Кривая импеданса любого диффузорного динамика, от Келлога и Райса до наших дней, выглядит, в принципе, одинаково, она даже фигурирует в логотипе какого-то электроакустического научного сообщества, сейчас забыл, какого. Горб на низких (для этого динамика) частотах обозначает частоту его основного резонанса. Где максимум - там и вожделенная Fs. Элементарнее не бывает. Выше резонанса наступает минимум полного сопротивления, его-то обычно и принимают за номинальное сопротивление динамика, хотя, как видите, оно остаётся таким только в небольшой полосе частот. Выше полное сопротивление начинает вновь расти, теперь уже из-за того, что звуковая катушка - не только мотор, но и индуктивность, сопротивление которой растёт с частотой. Но туда мы сейчас ходить не будем, там интересующие нас параметры не живут.

    Куда сложнее с величиной добротности, но, тем не менее, исчерпывающая информация о «второй карте» тоже содержится в импедансной кривой. Исчерпывающая, потому что по одной кривой можно вычислить и электрическую Qes, и механическую добротность Qms, по отдельности. Как потом сделать из них полную Qts, реально необходимую при расчёте оформления, мы уже знаем, дело нехитрое, не бином Ньютона.

    Как именно определяются искомые величины по импедансной кривой, мы обсудим в другой раз, когда разговор пойдёт о методах измерения параметров. Сейчас будем исходить из того, что кто-то (производитель акустики или соратники вашего покорного слуги) это за вас сделали. Но отмечу вот что. Существует два заблуждения, связанных с попытками экспресс-анализа параметров Тиля - Смолла по виду кривой импеданса. Первое - совсем лоховское, его мы сейчас развеем без следа. Это когда глядят на кривую импеданса с огромным горбом на резонансе и восклицают: «Ничего себе добротность!» Типа - высокая. А глядя на маленький пупырышек на кривой, заключают: раз пик импеданса так приглажен, значит, у динамика высокое демпфирование, то есть - низкая добротность.

    Так вот: в самом простом варианте это ровно наоборот. Что означает высокий пик импеданса на частоте резонанса? Что звуковая катушка вырабатывает много противо-ЭДС, предназначенной для электрического торможения колебаний диффузора. Только при таком включении, через большое сопротивление, ток, необходимый для работы тормоза, не протекает. А когда такой динамик окажется включён не для измерений, а нормально, напрямую от усилителя, тормозящий ток пойдёт будь здоров, катушка станет могучим препятствием на пути неумеренных колебаний диффузора на его любимой частоте.

    При прочих равных можно грубо оценить добротность по кривой, причём именно помня: высота импедансного пика характеризует потенциал электрического тормоза динамика, следовательно, чем он выше, тем НИЖЕ добротность. Будет ли такая оценка исчерпывающей? Не совсем, как было сказано, она останется грубой. Ведь в импедансной кривой, как уже говорилось, закопана информация и о Qes, и о Qms, выкопать которую можно (вручную или с помощью компьютерной программы), проанализировав не только высоту, но и «ширину плеч» резонансного горба.

    А как добротность сказывается на форме АЧХ динамика, нас ведь именно это интересует? Как сказывается - решающим образом сказывается. Чем ниже добротность, то есть чем мощнее внутренние тормоза динамика на резонансной частоте, тем ниже и более плавно спадая, пройдёт вблизи резонанса кривая, характеризующая создаваемое динамиком звуковое давление. Минимальная неравномерность в этой полосе частот будет при Qts, равной 0,707, что принято называть характеристикой Баттерворта. При высоких значениях добротности кривая звукового давления начнёт «горбиться» вблизи резонанса, понятно почему: тормоза слабые.

    Бывает ли «хорошая» или «плохая» полная добротность? Сама по себе - нет, потому что, когда динамик окажется установлен в акустическое оформление, в качестве которого сейчас будем рассматривать только закрытый ящик, и частота его резонанса, и полная добротность станут другими. Почему? Потому что и то и то зависит от упругости подвеса динамика. Резонансная частота зависит только от массы подвижной системы и жёсткости подвеса. С ростом жёсткости Fs растёт, с ростом массы - падает. Когда динамик установлен в закрытый ящик, воздух в нём, обладающий упругостью, начинает работать дополнительной пружиной в подвесе, общая жёсткость повышается, Fs растёт. Растёт и полная добротность, поскольку она - отношение упругих сил к тормозящим. Возможности тормозов динамика от его установки в некий объём не изменятся (с чего бы?), а суммарная упругость - возрастёт, добротность - неизбежно возрастёт. И никогда не станет ниже, чем была у «голого» динамика. Никогда, это - нижний предел. Насколько всё это возрастёт? А это зависит от того, насколько жёсткий у динамика собственный подвес. Смотрите: одно и то же значение Fs можно получить при лёгком диффузоре на мягком подвесе или при тяжёлом - на жёстком, масса и жёсткость действуют в противоположных направлениях, а итог может оказаться численно равным. Теперь если мы поставим в какой-то объём (обладающий полагающимся этому объёму упругостью) динамик с жёстким подвесом, то он небольшого возрастания суммарной жёсткости и не заметит, величины Fs и Qts изменятся не сильно. Поставим туда же динамик с мягким подвесом, по сравнению с жёсткостью которого «воздушная пружина» будет уже существенной, и увидим, что суммарная жёсткость изменилась сильно, а значит, Fs и Qts, исходно такие же, как у первого динамика, изменятся существенно.

    В тёмные «дотилевские» времена для расчёта новых значений частоты резонанса и добротности (они, чтобы не путать с параметрами «голого» динамика, обозначаются как Fc и Qtc) нужно было знать (или измерить) непосредственно упругость подвеса, в миллиметрах на ньютон приложенной силы, знать массу подвижной системы, а потом мудрить с программами расчёта. Тиль предложил концепцию «эквивалентного объёма», то есть такого объёма воздуха в закрытом ящике, упругость которого равна упругости подвеса динамика. Эта величина, обозначаемая Vas, и есть третья волшебная карта.

    Карта третья, объёмная

    Как измеряют Vas - история отдельная, там есть забавные повороты, и об этом, как говорю уже в третий раз, будет в специальном выпуске серии. Для практики важно понять две вещи. Первая: предельно лоховское заблуждение (увы, тем не менее встречающееся), что приведенное в сопроводительных документах к динамику значение Vas - это объём, в который динамик надо ставить. А это всего лишь - характеристика динамика, зависящая только от двух величин: жёсткости подвеса и диаметра диффузора. Если поставить динамик в ящик с объёмом, равным Vas, резонансная частота и полная добротность возрастут в 1,4 раза (это квадратный корень из двух). Если в объём, равный половине Vas - в 1,7 раза (корень из трёх). Если сделать ящик объёмом в одну треть от Vas, всё остальное возрастёт вдвое (корень из четырёх, логика должна быть уже понятна и без формул).

    В результате, действительно, чем меньше при прочих равных величина Vas у динамика, тем на более компактное оформление можно рассчитывать, сохраняя плановые показатели по Fc и Qtc. Компактность, однако, не даётся бесплатно. В акустике бесплатного вообще не бывает. Малое значение Vas при той же резонансной частоте динамика - результат сочетания жёсткого подвеса с тяжёлой подвижной системой. А от массы «подвижки» самым решительным образом зависит чувствительность. Поэтому все сабвуферные головки, отличающиеся возможностью работы в компактных закрытых корпусах, характеризуются и низкой чувствительностью по сравнению с коллегами с лёгкими диффузорами, но большими значениями Vas. Так что хороших и плохих значений Vas тоже не бывает, всему своя цена.

    Подготовлено по материалам журнала "Автозвук", март 2005 г. www.avtozvuk.com

    Вверх