Как искать алгебраическое дополнение матрицы. Миноры и алгебраические дополнения определителей

Определение. Если в определителе n-го порядка выбрать произвольно k строк и k столбцов, то элементы, стоящие на пересечении указанных строк и столбцов, образуют квадратную матрицу порядка k. Определитель такой квадратной матрицы называют минором k-го порядка .

Обозначается M k . Если k=1, то минор первого порядка - это элемент определителя.

Элементы, стоящие на пересечении оставшихся (n-k) строк и (n-k) столбцов, составляют квадратную матрицу порядка (n-k). Определитель такой матрицы называется минором, дополнительным к минору M k . Обозначается M n-k .

Алгебраическим дополнением минора M k будем называть его дополнительный минор, взятый со знаком “+” или “-” в зависимости от того, четна или нечетна сумма номеров всех строк и столбцов, в которых расположен минор M k .

Если k=1, то алгебраическое дополнение к элементу a ik вычисляется по формуле

A ik =(-1) i+k M ik , где M ik - минор (n-1) порядка.

Теорема . Произведение минора k-го порядка на его алгебраическое дополнение равно сумме некоторого числа членов определителя D n .

Доказательство

1. Рассмотрим частный случай. Пусть минор M k занимает левый верхний угол определителя, то есть располагается в строках с номерами 1, 2, ..., k, тогда минор M n-k будет занимать строки k+1, k+2, ..., n.

Вычислим алгебраическое дополнение к минору M k . По определению,

A n-k =(-1) s M n-k , где s=(1+2+...+k) +(1+2+...+k)= 2(1+2+...+k), тогда

(-1) s =1 и A n-k = M n-k . Получим

M k A n-k = M k M n-k . (*)

Берем произвольный член минора M k

где s - число инверсий в подстановке

и произвольный член минора M n-k

где s * - число инверсий в подстановке

Перемножая (1) и (3), получим

Произведение состоит из n элементов, расположенных в различных строках и столбцах определителя D. Следовательно, это произведение является членом определителя D. Знак произведения (5) определяется суммой инверсий в подстановках (2) и (4), а знак аналогичного произведения в определителе D определяется числом инверсий s k в подстановке

Очевидно, что s k =s+s * .

Таким образом, возвращаясь к равенству (*), получим, что произведение M k A n-k состоит только из членов определителя.

2. Пусть минор M k расположен в строках с номерами i 1 , i 2 , ..., i k и в столбцах с номерами j 1 , j 2 , ..., j k , причем i 1 < i 2 < ...< i k и j 1 < j 2 < ...< j k .

Используя свойства определителей, с помощью транспозиций сместим минор в левый верхний угол. Получим определитель D ¢ , в котором минор M k занимает левый верхний угол, а дополнительный к нему минор M¢ n-k - правый нижний угол, тогда, по доказанному в пункте 1, получим, что произведение M k n-k является суммой некоторого количества элементов определителя D ¢ , взятых со своим знаком. Но D ¢ получен из D с помощью (i 1 -1)+(i 2 -2)+ ...+(i k -k)=(i 1 + i 2 + ...+ i k)-(1+2+...+k) транспозиций строк и (j 1 -1)+(j 2 -2)+ ...+(j k -k)=(j 1 + j 2 + ...+ j k)- (1+2+...+k) транспозиций столбцов. То есть всего было выполнено


(i 1 + i 2 + ...+ i k)-(1+2+...+k)+ (j 1 + j 2 + ...+ j k)- (1+2+...+k)= (i 1 + i 2 + ...+ i k)+ (j 1 + j 2 + ...+ j k)- 2(1+2+...+k)=s-2(1+2+...+k). Поэтому члены определителей D и D ¢ отличаются знаком (-1) s-2(1+2+...+k) =(-1) s , следовательно, произведение (-1) s M k n-k будет состоять из некоторого количества членов определителя D, взятых с теми же знаками, какие они имеют в этом определителе.

Теорема Лапласа . Если в определителе n-го порядка выбрать произвольно k строк (или k столбцов) 1£k£n-1, тогда сумма произведений всех миноров k-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю D.

Доказательство

Выберем произвольно строки i 1 , i 2 , ..., i k и докажем, что

Ранее было доказано, что все элементы в левой части равенства содержатся в качестве слагаемых в определителе D. Покажем, что каждый член определителя D попадает только в одно из слагаемых . Действительно, всякое t s имеет вид t s = . если в этом произведении отметить сомножители, у которых первые индексы i 1 , i 2 , ..., i k , и составить их произведение , то можно заметить, что полученное произведение принадлежит минору k-го порядка. Следовательно, оставшиеся члены, взятые из оставшихся n-k строк и n-k столбцов, образуют элемент, принадлежащий дополнительному минору, а с учетом знака - алгебраическому дополнению, следовательно, любое t s попадает только в одно из произведений , что доказывает теорему.

Следствие (теорема о разложении определителя по строке). Сумма произведений элементов некоторой строки определителя на соответствующие алгебраические дополнения равна определителю.

(Доказательство в качестве упражнения.)

Теорема . Сумма произведений элементов i-ой строки определителя на соответствующие алгебраические дополнения к элементам j-ой строки (i¹j) равна 0.

Замечание . Удобно применять следствие из теоремы Лапласа к определителю, преобразованному с помощью свойств таким образом, что в одной из строк (или в одном из столбцов) все элементы, кроме одного, равны 0.

Пример. Вычислить определитель

12 -14 +35 -147 -20 -2= -160.


Миноры матрицы

Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 — его порядка:
Миноры и алгебраические дополнения, определитель матрицы 3 — его порядка , тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель : При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:


, знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор , взятый со знаком «+», если сумма (i + j) четное число, и со знаком «-«, если эта сумма нечетное число. Обозначается Аij.
Аij = (-1)i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некоторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример.

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.

Без преобразования матрицы, определитель легко посчитать только для матриц размером 2×2 и 3×3. Это делается по формулам:

Для матрицы

определитель равен:

Для матрицы

определитель равен:

a11*(a22*a33-a23*a32)-a12*(a21*a33-a23*a31)+a13*(a21*a32-a22*a31)

Расчёты для матриц размером 4×4 и выше затруднительны, поэтому их нужно преобразовывать в соответствии со свойствами определителя. Нужно стремиться получить матрицу, в которой все значения кроме одного любого столбца или любой строки равны нулю. Пример такой матрицы:

Для неё определитель равен:

A12*(a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41))

Обратите внимание, что

a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41)

это вычисление детерминанта матрицы, полученой вычетом строки и столбца, на пересечении которых находиться единственное не нулевое числов строки/столбца, по которому мы разлагаем матрицу:

И полученное значение мы умножаем на то самое число, из "нулевого" столбца / строки, при этом число может быть умножено на -1 (все подробности ниже).

Если привести матрицу к треугольному виду, то её определитель вычисляется как произведение цифр по диагонали. Например, для матрицы

Определитель равен:

Аналогично следует поступать с матрицами 5×5, 6×6 и другими больших размерностей.

Преобразования матриц нужно выполнять в соответствии со свойствами определителя. Но прежде чем перейти к практике по вычислению определителя для матриц 4×4, давайте вернёмся к матрицам 3×3 и подробно рассмотрим, как вычисляется определитель для них.

Минор

Определитель матрицы не очень прост для понимания, поскольку в его понятии присутствует рекурсия: определитель матрицы состоит из нескольких элементов, в том числе из определителя (других) матриц.

Чтобы не застрять на этом, давайте прямо сейчас (временно) примем, что определитель матрицы

вычисляется так:

Ещё разберёмся в условных обозначения и в таких понятиях как минор и алгебраическое дополнение .

Буквой i мы обозначаем порядковый номер стоки, буквой j - порядковый номер столбца.

a ij означает элемент матрицы (цифру) на пересечении строки i и столбца j.

Представим себе матрицу, которая получена из исходной удалением строки i и столбца j. Определитель новой матрицы, которая получена из исходной удалением строки i и столбца j, называется минором M ij элемента a ij .

Проиллюстрируем сказанное. Предположим, дана матрица

Тогда для определения минора M 11 элемента a 11 нам нужно составить новую матрицу, которая получается из исходной удалением первой строки и первого столбца:

И вычислить для неё определитель: 2*1 – (-4)*0 = 2

Для определения минора M 22 элемента a 22 нам нужно составить новую матрицу, которая получается из исходной удалением второй строки и второго столбца:

И вычислить для неё определитель: 1*1 -3*3 = -8

Алгебраическое дополнение

Алгебраическим дополнением А ij для элемента a ij называется минор M ij этого элемента, взятый со знаком «+», если сумма индексов строки и столбца (i + j), на пересечении которых стоит этот элемент, чётная, и со знаком «-», если сумма индексов нечётная.

Таким образом,

Для матрицы из предыдущего примера

А 11 = (-1) (1+1) * (2*1 – (-4)*0) = 2

А 22 = (-1) (2+2) * (1*1 -3*3) = -8

Вычисление определителя для матриц

Определителем порядка n, соответствующим матрице А, называется число, обозначаемое det A и вычисляемое по формуле:

В этой формуле нам всё уже знакомо, давайте теперь посчитаем определитель матрицы для

Каков бы ни был номер строки i=1,2,…, n или столбца j = 1, 2,…, n определитель n-го порядка равен сумме произведений элементов этой строки или этого столбца на их алгебраические дополнения, т. е.

Т.е. детерминант можно вычислить по любому столбцу или по любой строке.

Чтобы убедиться в этом, вычислим определитель для матрицы из последнего примера по второму столбцу

Как видим, результат идентичный и для этой матрицы определитель всегда будет -52 не зависимо от того, по какой строке или по какому столбцу мы его будем считать.

Свойства определителя матриц

  1. Строки и столбцы определителя равноправны, т. е. величина определителя не изменится, если поменять местами его строки и столбцы с сохранением порядка их следования. Эта операция называется транспонированием определителя. В соответствии со сформулированным свойством det A = det AT.
  2. При перестановке местами двух строк (или двух столбцов) определитель сохраняет свою абсолютную величину, но меняет знак на противоположный.
  3. Определитель с двумя одинаковыми строками (или столбцами) равен нулю.
  4. Умножение всех элементов некоторой строки (или некоторого столбца) определителя на число λ равносильно умножению определителя на число λ.
  5. Если все элементы какой-либо строки (или какого-либо столбца) определителя равны нулю, то и сам определитель равен нулю.
  6. Если элементы двух строк (или двух столбцов) определителя пропорциональны, то определитель равен нулю.
  7. Если к элементам некоторой строки (или некоторого столбца) определителя прибавить соответствующие элементы другой строки (другого столбца), умноженные на произвольный множитель λ, то величина определителя не изменится.
  8. Сумма произведений элементов какой-либо строки (какого-либо столбца) определителя на соответствующие алгебраические дополнения элементов любой другой строки (любого другого столбца) равна нулю.
  9. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a ij = b j + c j то определитель равен сумме двух определителей, у которых все строки, кроме i-й, такие же, как и в заданном определителе, i-я строка в одном из слагаемых состоит из элементов b j , а в другом — из элементов c j . Аналогичное свойство справедливо и для столбцов определителя.
  10. Определитель произведения двух квадратных матриц равен произведению их определителей: det (А * В) = det A * det B.

Для вычисления определителя любого порядка можно применять метод последовательного понижения порядка определителя. Для этого пользуются правилом разложения определителя по элементам строки или столбца. Еще один способ вычисления определителей заключается в том, чтобы с помощью элементарных преобразований со строками (или столбцами), прежде всего в соответствии со свойствами 4 и 7 определителей, привести определитель к виду, когда под главной диагональю определителя (определяемой так же, как и для квадратных матриц) все элементы равны нулю. Тогда определитель равен произведению элементов, расположенных на главной диагонали.

При вычислении определителя последовательным понижением порядка для уменьшения объема вычислительной работы целесообразно с помощью свойства 7 определителей добиться обнуления части элементов какой-либо строки или какого-либо столбца определителя, что уменьшит число вычисляемых алгебраических дополнений.

Приведение матрицы к треугольному виду, преобразование матрицы, облегчающее вычисление определителя

Показанные ниже методы нецелесообразно использовать для матриц 3×3, но я предлагаю рассмотреть суть методов на простом примере. Воспользуемся матрицей, для которой мы уже считали определитель — нам будет проще проверить правильность вычислений:

Используя 7-е свойство определителя, вычтем из второй строки третью, умноженную на 2:

из третьей строки вычтем соответствующие элементы первой строки определителя, умноженные на 3:

Так как элементы определителя, расположенные под его главной диагональю, равны 0, то, следовательно, определитесь равен произведению элементов, расположенных на главной диагонали:

1*2*(-26) = -52.

Как видим, ответ совпал с полученными ранее.

Давайте вспомним формулу определителя матрицы:

Детерминант — это сумма алгебраических дополнений, умноженная на члены одной из строк или одного из столбцов.

Если в результате преобразований мы сделаем так, что одна из строк (или столбец) будет состоять полностью из нулей кроме одной позиции, то нам не нужно будет считать все алгебраические дополнения, поскольку они заведомо будут равны нулю. Как и предыдущий метод, этот целесообразно применять для матриц больших размеров.

Покажем пример на той же самой матрице:

Замечаем, что второй столбец определителя уже содержит один нулевой элемент. Прибавляем к элементам второй строки элементы первой строки, умноженные на -1. Получим:

Вычислим определитель по второму столбцу. Нам нужно посчитать только одно алгебраическое дополнение, поскольку остальные заведомо сводятся к нулю:

Вычисление определителя для матриц 4×4, 5×5 и больших размерностей

Чтобы избежать слишком больших вычислений для матриц больших размеров следует делать преобразования, описанные выше. Приведём пару примеров.

Вычислить определитесь матрицы

Р е ш е н и е. Используя 7-е свойство определителя, вычтем из второй строки третью, из четвёртой строки — соответствующие элементы первой строки определителя, умноженные соответственно на 3, 4, 5. Эти действия сокращённо будем обозначать так: (2) — (1) * 3; (3) — (1) * 4; (4) — (1) * 5. Получим:

Выполним действия

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента а ij , определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент а ij . Обозначается М ij .

Рассмотрим на примере определителя матрицы 3 - его порядка:

Тогда согласно определению минора , минором М 12 , соответствующим элементу а 12 , будет определитель :

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

Знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента а ij называется его минор , взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается А ij . А ij = (-1) i+j × М ij .

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример:

4. Обратная матрица и её вычисление.

Пусть А - квадратная матрица n - ого порядка.

Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

Матрицей , союзной к матрице А, называется матрица

Где А ij - алгебраическое дополнение элемента а ij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы ).

Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е, где Е - единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

Обратная матрица

Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е - единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу , необходимо и достаточно, чтобы её определитель был отличен от нуля.

Для получения обратной матрицы используют формулу:

Где М ji дополнительный минор элемента а ji матрицы А.

5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1) перестановки строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

Ранг матрицы равен количеству ненулевых строк, т.е. .

Вверх