Передаточная функция и импульсная характеристика цепи. Переходная и импульсная характеристика Виды переходной характеристик

Расчет отклика цепи во многих случаях может быть упрощен, если входной сигнал представить суммой элементарных воздействий в виде прямоугольных импульсов малой длительности. Для этого сначала рассмотрим связь между функциями и, изображенными на рис.5.8а,6, которые можно записать в виде:

Вторая функция является единичным импульсом, который рассмотрен нами в п.2.4. Как видно, функция является производной от функции, т.е. . Осуществим в этих функциях предельный переход при. При этом функция перейдет в единичную функцию, а функция в функцию. Тогда в силу равенства следует, что единичный импульс, или - функция является производной единичной функции.

Для линейной цепи отсюда заключаем, что ее отклик на единичный импульс, называемый импульсной характеристикой цепи, является производной переходной характеристики цепи, т.е. или

Размерность импульсной характеристики равна размерности переходной характеристики, деленной на время.

Нахождение импульсной характеристики в большинстве случаев проще, чем нахождение переходной характеристики. Действительно, как показано в п. 2.4, спектральная функция единичного импульса, а поэтому для импульсной характеристики с помощью интеграла Фурье получаем выражение

Из этого выражения следует, что спектральная функция характеристики равна комплексному коэффициенту передачи цепи, т.е. или, пользуясь прямым преобразованием Фурье, запишем:

To есть импульсная характеристика цепи так же, как и переходная характеристика, определяется через коэффициент передачи, но для импульсной характеристики в большинстве случаев подынтегральное выражение в интеграле Фурье оказывается проще.

В качестве примера применим соотношение (5.14) для определения спектра импульсной характеристики интегрирующей цепи, переходная характеристика которой. Для импульсной характеристики получаем

Пользуясь здесь выражением (5.14), необходимо учесть, что переходная характеристика при тождественно равна нулю, и поэтому нижний предел в интеграле выражения (5.14) будет нуль. Тогда спектральная функция импульсной характеристики равна

т.е. получили коэффициент передачи интегрирующей цепи, соответствующий ранее полученному выражению (3.16).

Зная импульсную характеристику, можно найти отклик цепи на воздействие сигнала любой формы, либо предварительно найдя по соотношению (5.12) переходную характеристику, а затем воспользовавшись одним из выражений интеграла Дюамеля, либо непосредственно через функцию. В последнем случае входную функцию, т.е. воздействующий сигнал необходимо представить в виде суммы импульсов, как показано на рис. 5.9.

Такое представление функции будет точнее, если, т.е. если она представлена суммой бесконечно большого числа бесконечно малых по длительности импульсов, являющихся здесь элементарными воздействиями. Если бы элементарным воздействием был единичный импульс, площадь которого равна единице, то откликом цепи на такой импульс, появляющийся в момент времени, была бы импульсная характеристика. В рассматриваемом случае элементарный импульс имеет величину, равную мгновенному значению функции в момент и длительность, равную, т.е. его площадь равна. Тогда откликом на элементарное воздействие будет величина. Отклик цепи на воздействие, заданное функцией, будет суммой откликов на все элементарные воздействия, временное положение которых соответствует интервалу от 0 до, т.е.

Это выражение, являющееся еще одним видом записи интеграла Дюамеля, называется также сверткой функций. Оно по виду совпадает с оригиналом свертки изображений двух функций в формуле (4.21).

Импульсную характеристику цепи можно получить с помощью эксперимента, наблюдая отклик цепи (выходное напряжение) на электронном осциллографе. На вход цепи необходимо подать импульс весьма малой длительности. Для примера рассмотрим импульсную характеристику последовательного колебательного контура, считая, что выходное напряжение снимается с емкости С. Выше в п.1.6 мы рассмотрели переходный процесс при включении постоянного напряжения на такой контур. Если величина поданного напряжения равна единице, то напряжение на емкости, являющееся переходной характеристикой цепи равно, согласно (1.33),

Эта переходная характеристика представлена на рис.5.10а. Тогда импульсная характеристика контура

Считая добротность контура большой, полагаем и тогда первым членом можно пренебречь:

Эта характеристика представлена на рис.5.10б. Она соответствует осциллограмме свободных колебаний в контуре, рассмотренных нами в п.1.5.

Таким образом, для того чтобы экспериментально наблюдать импульсную характеристику контура, необходимо на вход контура подать импульс малой длительности, т.е. (как было пояснено в п.2.4) чтобы его длительность удовлетворяла условию.

Интеграл Дюамеля.

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.


Последовательность расчета с использованием
интеграла Дюамеля

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

  1. Переходная проводимость

.


18. Передаточная функция .

Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме.

Звено, описываемое уравнением или уравнениями в символической или операторной форме записи можно охарактеризовать двумя передаточными функциями: передаточной функцией по входной величине u; и передаточной функцией по входной величине f.

и

Используя передаточные функции, уравнение записывают в виде . Это уравнение представляет собой условную более компактную запись форму записи исходного уравнения.

Наряду с передаточной функцией в операторной форме широко используют передаточную функцию в форме изображений Лапласа.

Передаточные функции в форме изображений Лапласа и операторной форме с точностью до обозначений совпадают. Передаточную функцию в форме, изображения Лапласа можно получить из передаточной функции в операторной форме, если в последней сделать подстановку p=s. В общем случае это следует из того, что дифференцированию оригинала - символическому умножению оригинала на p - при нулевых начальных условиях соответствует умножение изображения на комплексное число s.

Сходство между передаточными функциями в форме изображения Лапласа и в операторной форме чисто внешнее, и оно имеет место только в случае стационарных звеньев (систем), т.е. только при нулевых начальных условиях.

Рассмотрим простую RLC (последовательно) цепь, её передаточная функция W(p)=U ВЫХ /U ВХ


Интеграл Фурье.

Функция f (x ), определенная на всей числовой оси называется периодической , если существует такое число, что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т .

2) Если функция f (x ) период Т , то функция f (ax )имеет период .

3) Если f (x )- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f (x ) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:(1)

То это разложение единственное и коэффициенты определяются по формулам:

где n =1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье .

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f (x ), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2, . . .)

Интегралом Фурье функции f(x) называется интеграл вида:

, где .


Частотные функции.

Если подать на вход системы с передаточной функцией W(p) гармонический сигнал

то после завершения переходного процесса на выходе установится гармонические колебания

с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом .

Подставим выражения для u(t) и y(t) в уравнение динамики

(aоp n + a 1 pn - 1 + a 2 p n - 2 + ... + a n)y = (bоp m + b 1 p m-1 + ... + b m)u.

Учтем, что

pnu = pnU m ejwt = U m (jw)nejwt = (jw)nu.

Аналогичные соотношения можно записать и для левой части уравнения. Получим:

По аналогии с передаточной функцией можно записать:

W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией . Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).

W(j ) есть комплексная функция, поэтому:

где P() - вещественная ЧХ (ВЧХ) ; Q() - мнимая ЧХ (МЧХ) ; А() - амплитудная ЧХ (АЧХ) : () - фазовая ЧХ (ФЧХ) . АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

;

Если W(j ) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j ), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).

Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.

В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) ().

Они получаются путем логарифмирования передаточной функции:

ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах .

Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как

lg(P 2 /P 1) = lg(A 2 2 /A 1 2) = 20lg(A 2 /A 1).

По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой . Так как lg(0) = - , то ось ординат проводят произвольно.

ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.


Обратные связи.

Принято считать, что звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на вход. При этом, если сигнал обратной связи вычитается из входного воздействия (), то обратную связь называют отрицательной. Если сигнал обратной связи складывается с входным воздействием (), то обратную связь называют положительной.

Передаточная функция замкнутой цепи с отрицательной обратной связью - звена, охваченного отрицательной обратной связью,- равна передаточной функции прямой цепи , деленной на единицу плюс передаточная функция разомкнутой цепи

Передаточная функция замкнутой цепи с положительной обратной связью равна передаточной функции прямой цепи, деленной на единицу минус передаточная функция разомкнутой цепи


22. 23. Четырёхполюсники .

При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников.

Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.

Примерами четырыхполюсника являются трансформатор, усилитель, потенциометр, линия электропередачи и другие электротехнические устройства, у которых можно выделить две пары полюсов.

В общем случае четырехполюсники можно разделить на активные, в структуру которых входят источники энергии, и пассивные, ветви которых не содержат источников энергии.

Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением (см. рис. 1,а).

В соответствии с принципом компенсации заменим исходное сопротивление источником с напряжением (см. рис. 1,б). Тогда на основании метода наложения для цепи на рис. 1,б можно записать

Уравнения (3) и (4) представляют собой основные уравнения четырехполюсника; их также называют уравнениями четырехполюсника в А-форме (см. табл. 1). Вообще говоря, существует шесть форм записи уравнений пассивного четырехполюсника. Действительно, четырехполюсник характеризуется двумя напряжениями и и двумя токами и . Любые две величины можно выразить через остальные. Так как число сочетаний из четырех по два равно шести, то и возможно шесть форм записи уравнений пассивного четырехполюсника, которые приведены в табл. 1. Положительные направления токов для различных форм записи уравнений приведены на рис. 2. Отметим, что выбор той или иной формы уравнений определяется областью и типом решаемой задачи.

Таблица 1. Формы записи уравнений пассивного четырехполюсника

Форма Уравнения Связь с коэффициентами основных уравнений
А-форма ; ;
Y-форма ; ; ; ; ; ;
Z-форма ; ; ; ; ; ;
Н-форма ; ; ; ; ; ;
G-форма ; ; ; ; ; ;
B-форма ; . ; ; ; .

Характеристическое сопротивление и коэффициент
распространения симметричного четырехполюсника

В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.

.

Это сопротивление обозначают как и называют характеристическим сопротивлением симметричного четырехполюсника, а режим работы четырехполюсника, для которого справедливо

,

Министерство образования и науки Украины

Донецкий Национальный Университет

Доклад

на тему: Радиотехнические цепи и сигналы

Студента 3 курса дневного отделения НФ-3

Разработал студент:

Александрович С. В.

Проверил преподаватель:

Долбещенков В. В.

ВВЕДЕНИЕ

"Радиотехнические цепи и сигналы" (РТЦ и С) – курс, являющийся продолжением курса "Основы теории цепей". Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях. Излагаемые в курсе "РТЦ и С" методы анализа сигналов и радиотехнических цепей используют математические и физические сведения, в основном известные студентам из предшествующих дисциплин. Важная задача курса "РТЦ и С" – научить студентов выбирать математический аппарат, адекватный встретившейся проблеме, показать, как работает этот аппарат при решении конкретных задач в области радиотехники. Не менее важно научить студентов видеть тесную связь математического описания с физической стороной рассматриваемого явления, уметь составлять математические модели изучаемых процессов.

Основные разделы, изучаемые в курсе "Радиотехнические цепи и сигналы":

1. Временной анализ цепей на основе свертки;

2. Спектральный анализ сигналов;

3. Радиосигналы с амплитудной, угловой модуляцией;

4. Корреляционный анализ сигналов;

5. Активные линейные цепи;

6. Анализ прохождения сигналов через узкополосные цепи;

7. Отрицательная обратная связь в линейных цепях;

8. Синтез фильтров;

9. Нелинейные цепи и методы их анализа;

10. Цепи с переменными параметрами;

11. Принципы генерирования гармонических колебаний;

12. Принципы обработки сигналов дискретного времени;

13. Случайные сигналы;

14. Анализ прохождения случайных сигналов через линейные цепи;

15. Анализ прохождения случайных сигналов через нелинейные цепи;

16. Оптимальная фильтрация детерминированных сигналов в шумах;

17. Оптимальная фильтрация случайных сигналов;

18. Численные методы расчета линейных цепей.

ВРЕМЕННОЙ АНАЛИЗ ЦЕПЕЙ НА ОСНОВЕ СВЕРТКИ

Переходная и импульсная характеристика

В основе временного метода лежит понятие переходной и им­пульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции. Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воз­действие единичной импульсной функции (d-функции). Обо­значается импульсная характеристика h (t ). Причем, g (t ) и h (t )определяются при нулевых начальных условиях в цепи. В зави­симости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмер­ными величинами, либо имеют размерность А/В или В/А.


Использование понятий переходной и импульсной характери­стик цепи позволяет свести расчет реакции цепи от действия непе­риодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульс­ной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи нахо­дится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).

Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций вели­чины 1/t, сдвинутых друг относительно друга на время t:

т. е. единичная импульсная функция рав­на производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение сохраня­ется и для импульсных и переходных реак­ций цепи

т. е. импульсная характеристика является производной от переход­ной характеристики цепи.

Уравнение справедливо для случая, когда g (0) = 0 (нуле­вые начальные условия для цепи). Если же g (0) ¹ 0, то предста­вив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

Для нахождения переходных и им­пуль­сных характеристик цепи можно использо­вать как классический, так и операторный методы. Сущность классического метода сос­то­ит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функ­ции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи или операторным мето­дом.

Следует отметить, что величина I (р ) в уравнении численно равна изображению переходной проводимости. Аналогичное изо­бражение импульсной характеристики численно равно операторной проводимости цепи

Например, для -цепи имеем:

Применив к Y (p ) теорему разложения, получим:

В табл. 1.1 сведены значения переходной и импульсных харак­теристик по току и напряжению для некоторых цепей первого и второго порядка.

Академия России

Кафедра Физики

Лекция

Переходные и импульсные характеристики электрических цепей

Орел 2009

Учебные и воспитательные цели:

Разъяснить слушателям сущность переходной и импульсной характеристик электрических цепей, показать связь между характеристиками, обратить внимание на применение рассматриваемых характеристик для анализа и синтеза ЭЦ, нацелить на качественную подготовку к практическому занятию.

Распределение времени лекции

Вступительная часть……………………………………………………5 мин.

Учебные вопросы:

1. Переходные характеристики электрических цепей………………15 мин.

2. Интегралы Дюамеля………………………………………………...25 мин.

3. Импульсные характеристики электрических цепей. Связь между характеристиками………………………………………….………...25 мин.

4. Интегралы свертки………………………………………………….15 мин.

Заключение……………………………………………………………5 мин.


1. Переходные характеристики электрических цепей

Переходная характеристика цепи (как и импульсная) относится к временным характеристикам цепи, т. е. выражает некоторый переходный процесс при заранее установленных воздействиях и начальных условиях.

Для сравнения электрических цепей по их реакции к этим воздействиям, необходимо цепи поставить в одинаковые условия. Наиболее простыми и удобными являются нулевые начальные условия.

Переходной характеристикой цепи называют отношение реакции цепи на ступенчатое воздействие к величине этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на ступенчатое воздействие;

– величина ступенчатого воздействия [В] или [А].

Так как и делится на величину воздействия (это вещественное число), то фактически – реакция цепи на единичное ступенчатое воздействие.

Если переходная характеристика цепи известна (или может быть вычислена), то из формулы можно найти реакцию этой цепи на ступенчатое воздействие при нулевых НУ

.

Установим связь между операторной передаточной функцией цепи, которая часто известна (или может быть найдена), и переходной характеристикой этой цепи. Для этого используем введенное понятие операторной передаточной функции:

.

Отношение преобразованной по Лапласу реакции цепи к величине воздействия представляет собой операторную переходную характеристику цепи:

Следовательно .

Отсюда находится операторная переходная характеристика цепи по операторной передаточной функции.

Для определения переходной характеристики цепи необходимо применить обратное преобразование Лапласа:

воспользовавшись таблицей соответствий или (предварительно) теоремой разложения.

Пример: определить переходную характеристику для реакции напряжение на емкости в последовательной -цепи (рис. 1):

Здесь реакция на ступенчатое воздействие величиной :

,

откуда переходная характеристика:

.

Переходные характеристики наиболее часто встречающихся цепей найдены и даны в справочной литературе.


2. Интегралы Дюамеля

Переходную характеристику часто используют для нахождения реакции цепи на сложное воздействие. Установим эти соотношения.

Условимся, что воздействие является непрерывной функцией и подводится к цепи в момент времени , а начальные условия – нулевые.

Заданное воздействие можно представить как сумму ступенчатого воздействия приложенного к цепи в момент и бесконечно большого числа бесконечно малых ступенчатых воздействий, непрерывно следующих друг за другом. Одно из таких элементарных воздействий, соответствующих моменту приложения показано на рисунке 2.

Найдем значение реакции цепи в некоторый момент времени .

Ступенчатое воздействие с перепадом к моменту времени обуславливает реакцию, равную произведению перепада на значение переходной характеристики цепи при , т. е. равную:

Бесконечно малое же ступенчатое воздействие с перепадом , обуславливает бесконечно малую реакцию , где есть время, прошедшее от момента приложения воздействия до момента наблюдения. Так как по условию функция непрерывна, то:

В соответствии с принципом наложения реакции будет равна сумме реакций, обусловленных совокупностью воздействий, предшествующих моменту наблюдения , т. е.

.

Обычно в последней формуле заменяют просто на , поскольку найденная формула верна при любых значениях времени :

.

Или, после несложных преобразований:

.

Любое из этих соотношений и решает задачу вычисления реакции линейной электрической цепи на заданное непрерывное воздействие по известной переходной характеристики цепи . Эти соотношения называют интегралами Дюамеля.

3. Импульсные характеристики электрических цепей

Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на импульсное воздействие;

– площадь импульса воздействия.

По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .

В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.

Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():

.

К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):

Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.

По определению:

.

Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:

.

Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:

.

Следовательно, .

Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:

Т. е. фактически .

Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:

Таким образом, зная одну из характеристик цепи, можно определить любые другие.

Произведем тождественное преобразование равенства, прибавив к средней части .

Тогда будем иметь .

Поскольку представляет собой изображение производной переходной характеристики, то исходное равенство можно переписать в виде:

Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:

Если , то .

Обратное соотношение между указанными характеристиками имеет вид:

.

По передаточной функции легко установить наличие в составе функции слагаемого .

Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.

Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.

Определим :

По таблице соответствий перейдем к оригиналу:

.

График этой функции показан на рисунке 5.

Рис. 5

Передаточная функция :

Согласно таблице соответствий имеем:

.

График полученной функции показан на рисунке 6.

Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и .

Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:

4. Интегралы свертки (наложения)

Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.

Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .

Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:

поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .

Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .

Таким образом:

.

Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:

.

Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию , которая находится в результате вычисления интеграла свертки, называют сверткой и .

Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:

.

Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:

Воспользуемся интегралом свертки:

.

Выражение для было получено ранее.

Следовательно, , и .

Такой же результат можно получить, применив интеграл Дюамеля.

Литература:

Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник)

Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998. (Учебник);

Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974. (Учебник);

Попов В. П. Основы теории цепей – М.: Высшая школа, 2000.(Учебник)

Переходная характеристика используется при расчете реакции линейной электрической цепи, когда на ее вход подается импульс
произвольной формы. При этом входной импульс
аппроксимируют множеством ступенек и определяют реакцию цепи на каждую ступеньку, а затем находят интегральную цепи
, как сумму реакций на каждую составляющую входного импульса
.

Переходная характеристика или переходная функция
цепи –
это ее обобщенная характеристика, являющаяся временной функцией, численно равной реакции цепи на единичный скачок напряжения или тока на ее входе, при нулевых начальных условиях (рис. 13.11);

другими словами, это отклик цепи, свободной от начального запаса энергии на функцию
на входе.

Выражение переходной характеристики
зависит только от внутренней структуры и значения параметров элементов цепи.

Из определения переходной характеристики цепи следует, что при входном воздействии
реакция цепи
(рис. 13.11).

Пример. Пусть цепь подключается к источнику постоянного напряжения
. Тогда входное воздействие будет иметь вид, реакция цепи – , а переходная характеристика цепи по напряжению –
. При

.

Умножение реакции цепи
на функцию
или
означает, что переходная функция
при
и
при
, что отражаетпринцип причинности в линейных электрических цепях, т.е. отклик (на выходе цепи) не может появиться раньше момента приложения сигнала к входу цепи.

Виды переходной характеристик.

Различают следующие виды переходной характеристики:

(13.5)

– переходная характеристика цепи по напряжению;

– переходная характеристика цепи по току;

– переходное сопротивление цепи, Ом;

– переходная проводимость цепи, См,

где
– уровни входного ступенчатого сигнала.

Переходную функцию
для любого пассивного двухполюсника можно найти классическим или операторным методом.

Расчет переходной характеристики классическим методом. Пример.

Пример. Рассчитаем переходную характеристику по напряжению для цепи (рис. 13.12, а ) с параметрами .

Решение

Воспользуемся результатом, полученном в п.11.4. Согласно выражению (11.20) напряжение на индуктивности

где
.

Проведем масштабирование согласно выражению (13.5) и построение функции
(рис. 13.12,б ):

.

Расчет переходной характеристики операторным методом

Комплексная схема замещения исходной цепи примет вид на рис. 13.13.


Передаточная функция этой цепи по напряжению:

где
.

При
, т.е. при
, изображение
, а изображение напряжения на катушке
.

В этом случае оригинал
изображения
есть переходная функция цепи по напряжению, т.е.

или в общем виде:

, (13.6)

т.е. переходная функция
цепи равна обратному преобразованию Лапласа ее передаточной функции
, умноженной на изображение единичного скачка .

В рассматриваемом примере (см. рис. 13.12) передаточная функция по напряжению:

где
, а функция
имеет вид .

Примечание . Если на вход цепи подано напряжение
, то в формуле переходной функции
время необходимо заменить на выражение
. В рассмотренном примере запаздывающая передаточная функция по напряжению имеет вид:

Выводы

Переходная характеристика введена, в основном, по двум причинам.

1. Единичное ступенчатое воздействие
– скачкообразное, и потому довольно тяжелое для любой системы или цепи внешнее воздействие. Следовательно, важно знать реакцию системы или цепи именно при таком воздействии, т.е. переходную характеристику
.

2. При известной переходной характеристике
с помощью интеграла Дюамеля (см. далее пп.13.4, 13.5) можно определить реакцию системы или цепи при любой форме внешних воздействий.

Вверх