Транспонирование матриц. Транспонирование матрицы онлайн Найти матрицу ат

Транспонирование матрицы через данный онлайн калькулятор не займёт у вас много времени, но зато быстро даст результат и поможет лучше разобраться в самом процессе.

Иногда в алгебраических вычислениях возникает потребность поменять местами строки и столбцы матрицы. Такая операция именуется транспонированием матрицы. Строки по порядку становятся столбцами, а сама матрица – транспонированной. В данных вычислениях есть определённые правила, и чтобы в них разобраться и наглядно ознакомиться с процессом, воспользуйтесь данным онлайн калькулятором. Он существенно облегчит вам задачу и поможет лучше усвоить теорию транспонирования матриц. Значительным плюсом данного калькулятора является демонстрация развёрнутой и детального решения. Таким образом, его использование способствует получению более глубоких и осознанных представлений об алгебраических расчётах. K тому же, с его помощью всегда можно проверить, насколько успешно вы справились с задачей, производя транспонирование матриц вручную.

Пользоваться калькулятором очень просто. Чтобы найти транспонированную матрицу онлайн укажите размер матрицы нажатием на иконки «+» или «-» до получения нужных значений числа столбцов и строк. Далее в поля вводятся необходимые цифры. Ниже расположена кнопка «Вычислить» - её нажатие выводит на экран готовое решение с подробной расшифровкой алгоритма.

При работе с матрицами иногда нужно их транспонировать, то есть, говоря простыми словами, перевернуть. Конечно, можно перебить данные вручную, но Эксель предлагает несколько способов сделать это проще и быстрее. Давайте разберем их подробно.

Транспонирование матрицы – это процесс смены столбцов и строк местами. В программе Excel имеется две возможности проведения транспонирования: используя функцию ТРАНСП и при помощи инструмента специальной вставки. Рассмотрим каждый из этих вариантов более подробно.

Способ 1: оператор ТРАНСП

Функция ТРАНСП относится к категории операторов «Ссылки и массивы» . Особенностью является то, что у неё, как и у других функций, работающих с массивами, результатом выдачи является не содержимое ячейки, а целый массив данных. Синтаксис функции довольно простой и выглядит следующим образом:

ТРАНСП(массив)

То есть, единственным аргументом данного оператора является ссылка на массив, в нашем случае матрицу, который следует преобразовать.

Посмотрим, как эту функцию можно применить на примере с реальной матрицей.

  1. Выделяем незаполненную ячейку на листе, планируемую сделать крайней верхней левой ячейкой преобразованной матрицы. Далее жмем на значок «Вставить функцию» , который расположен вблизи строки формул.
  2. Производится запуск Мастера функций . Открываем в нем категорию «Ссылки и массивы» или «Полный алфавитный перечень» . После того, как отыскали наименование «ТРАНСП» , производим его выделение и жмем на кнопку «OK» .
  3. Происходит запуск окна аргументов функции ТРАНСП . Единственному аргументу данного оператора соответствует поле «Массив» . В него нужно внести координаты матрицы, которую следует перевернуть. Для этого устанавливаем курсор в поле и, зажав левую кнопку мыши, выделяем весь диапазон матрицы на листе. После того, как адрес области отобразился в окне аргументов, щелкаем по кнопке «OK» .
  4. Но, как видим, в ячейке, которая предназначена для вывода результата, отображается некорректное значение в виде ошибки «#ЗНАЧ!» . Это связано с особенностями работы операторов массивов. Чтобы исправить эту ошибку, выделяем диапазон ячеек, в котором число строк должно быть равным количеству столбцов первоначальной матрицы, а число столбцов – количеству строк. Подобное соответствие очень важно для того, чтобы результат отобразился корректно. При этом, ячейка, в которой содержится выражение «#ЗНАЧ!» должна быть верхней левой ячейкой выделяемого массива и именно с неё следует начинать процедуру выделения, зажав левую кнопку мыши. После того, как вы провели выделение, установите курсор в строку формул сразу же после выражения оператора ТРАНСП , которое должно отобразиться в ней. После этого, чтобы произвести вычисление, нужно нажать не на кнопку Enter , как принято в обычных формулах, а набрать комбинацию Ctrl+Shift+Enter .
  5. После этих действий матрица отобразилась так, как нам надо, то есть, в транспонированном виде. Но существует ещё одна проблема. Дело в том, что теперь новая матрица представляет собой связанный формулой массив, который нельзя изменять. При попытке произвести любое изменение с содержимым матрицы будет выскакивать ошибка. Некоторых пользователей такое положение вещей вполне удовлетворяет, так как они не собираются производить изменения в массиве, а вот другим нужна матрица, с которой полноценно можно работать.

    Чтобы решить данную проблему, выделяем весь транспонированный диапазон. Переместившись во вкладку «Главная» щелкаем по пиктограмме «Копировать» , которая расположена на ленте в группе «Буфер обмена» . Вместо указанного действия можно после выделения произвести набор стандартного сочетания клавиш для копирования Ctrl+C .

  6. Затем, не снимая выделения с транспонированного диапазона, производим клик по нему правой кнопкой мыши. В контекстном меню в группе «Параметры вставки» щелкаем по иконке «Значения» , которая имеет вид пиктограммы с изображением чисел.

    Вслед за этим формула массива ТРАНСП будет удалена, а в ячейках останутся только одни значения, с которыми можно работать так же, как и с исходной матрицей.

Способ 2: транспонирование матрицы с помощью специальной вставки

Кроме того, матрицу можно транспонировать с помощью одного элемента контекстного меню, который носит название «Специальная вставка» .


После указанных действий на листе останется только преобразованная матрица.

Этими же двумя способами, о которых шла речь выше, можно транспонировать в Excel не только матрицы, но и полноценные таблицы. Процедура при этом будет практически идентичной.

Итак, мы выяснили, что в программе Excel матрицу можно транспонировать, то есть, перевернуть, поменяв столбцы и строчки местами, двумя способами. Первый вариант предполагает использование функции ТРАНСП , а второй – инструменты специальной вставки. По большому счету конечный результат, который получается при использовании обоих этих способов, ничем не отличается. Оба метода работают практически в любой ситуации. Так что при выборе варианта преобразования, на первый план выходят личные предпочтения конкретного пользователя. То есть, какой из данных способов для вас лично удобнее, тот и используйте.

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Нахождение транспонированной матрицы A T .
  2. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  3. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы C .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1 . Запишем матрицу в виде:

Алгебраические дополнения. ∆ 1,2 = -(2·4-(-2·(-2))) = -4 ∆ 2,1 = -(2·4-5·3) = 7 ∆ 2,3 = -(-1·5-(-2·2)) = 1 ∆ 3,2 = -(-1·(-2)-2·3) = 4
A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.
  1. Находим определитель данной квадратной матрицы A .
  2. Находим алгебраические дополнения ко всем элементам матрицы A .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы A .
Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

Вверх