Волоконно-оптические линии связи (волс) - строим сеть предприятия. Волс: основные характеристики и сферы применения Связь оптика волокно

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

ВНИМАНИЕ: все компоненты СКС и ВОЛС, коммутационные и электротехнические устройства поставляются только в рамках сетевых проектов, мы не занимаемся дистрибуцией оборудования.
  • Сети на основе кабеля типа "Витая пара"
  • Оптоволоконные сети
ИЦ ТЕЛЕКОМ-СЕРВИС предлагает услуги по проектированию, монтажу и сервисной поддержке корпоративных коммуникаций, построенных на основе ВОЛС. Уникальное предложение компании – в комплексном подходе к созданию корпоративных телекоммуникационных и информационных систем. Помимо прокладки оптики, мы эффективно реализуем создание офисных АТС и call-центров (в том числе на базе VOIP), а также создание центров обработки данных и СХД.

ИЦ ТЕЛЕКОМ-СЕРВИС имеет партнерские отношения с ведущими разработчиками решений по созданию структурированных кабельных систем. Компания обладает полным пакетом действующих лицензий, позволяющим осуществлять весь комплекс работ по сетевой интеграции на разноотраслевых объектах.

Специалисты компании осуществляют полный цикл проекта по построению или модернизации сетевой инфраструктуры заказчика, построению ВОЛС и СКС – начиная от аудита до запуска системы и ее последующего технического обслуживания.

В то время как возможности медных кабельных линий приближаются к своим предельным значениям и требуются все больших затрат на дальнейшее развитие этого направления, перспективы использования ВОЛС становятся все экономичнее и эффективнее. Сегодня ВОЛС, безусловно, являются одним из самых перспективных направлений в области связи. Пропускные способности оптических каналов на порядки выше, чем у информационных линий на основе медного кабеля. Кроме того волоконно-оптические линии связи невосприимчивы к электромагнитным полям, что снимает некоторые типичные проблемы медных систем связи.

Основные понятия и области применения ВОЛС

Волоконно-оптическая линия связи (ВОЛС) – это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".

Волс – это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии Волс помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.

ВОЛС в основном используются при построении объектов, в которых монтаж СКС должен объединить многоэтажное здание или здание большой протяженности, а также при объединении территориально-разрозненных зданий.

Структурная схема ВОЛС, применяемой для создания подсистемы внешних магистралей, изображена на рисунке.


Области применения и классификация волоконно-оптических кабелей (ВОК)

Волоконно-оптические кабели, применяемые при проектировании и монтаже СКС , предназначены для передачи оптических сигналов внутри зданий и между ними. На их основе могут быть реализованы все три подсистемы СКС, хотя в горизонталь ной подсистеме волоконная оптика пока находит ограниченное применение для обеспечения функционирования ЛВС. В подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль.

В зависимости от основной области применения волоконно-оптические кабели подразделяются на три основных вида:

  • кабели внешней прокладки (outdoor cables);
  • кабели внутренней прокладки (indoor cables);
  • кабели для шнуров.

Кабели внешней прокладки используются при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Основной областью использования кабелей внутренней прокладки является организация внутренней магистрали здания, тогда как кабели для шнуров предназначены в основном для изготовления соединительных и коммутационных шнуров, а также для выполнения горизонтальной разводки при реализации проектов класса «fiber to the desk» (волокно до рабочего места) и «fiber to the room» (волокно до комнаты). Общую классификацию оптических кабелей СКС можно представить в виде как показано на рисунке.

Преимущества ВОЛС

    Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.

    Широкая полоса пропускания – обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания – это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

    Малое затухание светового сигнала в волокне . Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.

    Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.

    Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.

    Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.

    Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.

    Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

    Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

    Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.

    Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

    Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания - волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).

Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством - малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.

Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже - в силу высокой стоимости строительства оптических линий связи.

Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.

При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:

  • Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна - несколько терабит информации за 1 секунду.
  • Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
  • Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
  • Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).

  • Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
  • Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги.
  • Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.

  • Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
  • Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
  • Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки - для оснащения отдельных рабочих мест, а снаружи - для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Технологии соединения ВОЛС

Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.

Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).

Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон . Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.

Наиболее распространённой является технология склеивания, для которой используется специальное оборудование и инструмент и которая включает несколько технологических операций.

В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.

После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа . Полировка может осуществляться вручную или с помощью полированной машины.

Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.

Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.

Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование - автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.

После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.

Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС - механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.

Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.

Механическое сращивание подразумевает использование специальных соединителей - так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.

Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.

ВОЛС: типы оптических волокон

Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.

В современном мире потребности в связи постоянно возрастают. Потребителям необходимы все большие скорости передачи, качество связи и транслируемого контента (например качество цифрового телевидение). Провайдерам - фирмам, которые предоставляют услуги проводного интернета, беспроводного интернета (Wi-Fi), IP-телефонии, цифрового телевидения - необходимо расширять возможности своих линий связи. Об этих и многих других сферах телекоммуникаций Вы сможете узнать на нашем сайте rcsz-tcc.ru.

Каналы, основанные на обычной витой паре, ограничивают скорость при большой протяженности линий связи и сильной нагрузке (большого количества абонентов) на них. Выход нашли в наиболее современных линиях - оптических. По другому их также называют Волоконно-Оптические Линии Связи (ВОЛС). В чем же преимущество таких линий, и за счет чего оно достигается?

Для начала - немного истории. Впервые эксперимент по передаче светового сигнала был проведен и представлен Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) в далеком 1840 году. Но первое практическое применение технологии произошло только в ХХ веке. В 1952 году физик Нариндер Сингх Капани (Narinder Singh Kapany) смог провести несколько исследований, которые послужили толчком к созданию оптического волокна. Нариндер создал жгут из стеклообразных волокон, которые и представляют собой оптический волновод (волновод - направляющая система для сигналов). Середина волокна имеет меньший коэффициент преломления, чем оболочка. В этом случае сигнал полностью будет проходить по сердцевине, а от оболочки отражаться обратно в сердцевину. Таким образом, оболочка выполняет роль зеркала. До изобретения таких волокон сигнал не доходил до конца линии. Теперь же задачу можно было считать решенной. Открытие в 1970 году компанией Corning метода изготовления оптоволокна, которое не уступало по затуханию медному проводу для телефонного сигнала, считают переломным моментом в истории ВОЛС.

Оптическая связь имеет много преимуществ перед электрической . Во-первых - широкая полоса пропускания за счет очень высоких частот передачи позволяет передавать информацию со скоростью в несколько Тбит/с. Во-вторых - малые затухания сигнала позволяют строить магистрали до 100 и более километров без ретрансляционных станций. К примеру, Трансатлантическая оптическая магистраль выполнена без единого ретранслятора. В-третьих, ВОЛС устойчива к любым внешним помехам, которые могут наводиться от соседних радиопередатчиков, других линий передачи, даже от погодных условий, в отличие от других кабельных систем. Одним из важнейших преимуществ является защита информации. К ВОЛС невозможно подключиться и перехватить информацию - линия будет повреждена, а это легко зафиксировать. Т.к. оптическое волокно - диэлектрик, вероятность пожара от такой линии полностью исключается, что актуально на предприятиях с высоким риском возгорания. Ну и, конечно же, срок службы ВОЛС - 25 и более лет.


Передатчиком (генератором информационного сигнала) в таких линиях чаще всего в настоящее время являются лазеры, в том числе и выполненные по интегральной технологии. Приемниками - фотодетектирующие диоды. Эти приборы и формируют основной недостаток ВОЛС - стоимость активных элементов. Вторым существенным недостатком оптических линий является высокая стоимость обслуживания. При разрыве оптоволокна затраты на восстановление гораздо выше, чем при обрыве медных или других линий. При этом на магистральных линиях недопускаются разрывы (места сварки вносят существенные затухания), поэтому приходится заменять большие участки новым волокном. Ремонтировать ВОЛС рекомендуется только на коротких расстояниях, в пределах района или маленького города.

Оптоволоконные технологии постоянно развиваются - это технологии будущего. А о самых передовых новинках Вы всегда сможете прочитать на нашем сайте rcsz-tcc.ru.

Оптоволоконная связь - связь, построенная на базе оптоволоконных кабелей. Широко применяется также сокращение ВОЛС (волоконно-оптическая линия связи). Используется в различных сферах человеческой деятельности, начиная от вычислительных систем и заканчивая структурами для связи на больших расстояниях. Является сегодня наиболее популярным и эффективным методом для обеспечения телекоммуникационных услуг.

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Вычислительные сети предприятий в нашей стране развиваются все более быстрыми темпами. Поэтому обычно перед компанией со временем встают 2 основные проблемы: модернизация существующей сети в сторону увеличения мощности всех ее компонент (рабочих станций, активного и сетевого оборудования) и реорганизация обработки информации. Ситуация, когда на предприятии необходимо объединить в единую сеть несколько подразделений, как, например, склад, головной офис, удаленный офис, бухгалтерский отдел, конструкторское бюро и т.д. и т.п., зачастую приходит не сразу, а начинает решаться, когда разрозненная обработка информации становится экономически невыгодной и приводит к потере времени. Лишь тогда информационный отдел, служба или подобное подразделение начинают ломать голову как наиболее экономично, с наименьшими временными затратами, без потери качества, объединить в единую корпоративную сеть предприятия несколько локальных вычислительных сетей и удаленных центров обработки информации.

Кроме того, потребность в передаче данных с высокой скоростью и без потери качества выходит на первый план. Решение этой проблемы требует, помимо закупки активного сетевого оборудования, организацию линий связи. Для этого обычно используется кабельная проводка на основе медного или оптоволоконного кабеля. Однако, хорошо отработанные решения для организации ближней связи с использованием медных или волоконно-оптических линий не всегда удобны.

Прокладка кабеля часто влечет за собой значительные затруднения:

  • невозможность получить разрешение на прокладку кабеля, особенно в городских условиях;
  • нет возможности получить в аренду телефонные линии от оператора, либо плохое качество связи по арендованным линиям;
  • большие затраты средств и времени на прокладку новых коммуникаций, а также из-за высокой арендной платы за использование уже существующих коммуникаций;
  • использование старых коммуникаций, которые из-за своей высокой загруженности уже не могут справиться с новым дополнительным трафиком.

Из всего вышесказанного следует, что в ряде случаев использование беспроводных соединений может быть экономически выгодным.

Преимущества беспроводных сетей передачи данных:

  • возможная альтернатива использования арендованных линий;
  • экономичность. Например, для организации временных сетей при частых структурных перестройках в организации, связанных с изменением конфигурации кабельной сети;
  • объединение в сеть компьютеров там, где прокладка кабеля часто невозможна технически.

Если еще несколько лет назад первые беспроводные сетевые устройства только начинали появляться на рынке, то сейчас решения на базе беспроводного доступа предлагают все крупные системные интеграторы. Стоит оговориться, что речь идет о радиодоступе.

Большинство беспроводных устройств поддерживают конфигурацию Ethernet. С физической точки зрения, при организации беспроводной сети используются или схема точка — точка (point-to-point) или сети работают в режиме многоточечного доступа (point-to-multipoint). В первом случае связь обеспечивается между двумя удаленными друг от друга устройствами, во втором — в сеть объединяются несколько устройств.

Технологии и устройства, используемые при построении беспроводных сетей:

  • сотовая связь с коммутацией каналов;
  • пакетная радиосвязь;
  • использование космических спутников (спутниковая связь);
  • использование беспроводных мостов для соединения ЛВС;
  • с использованием радиоинтерфейса;
  • пейджинговая радиосвязь;
  • с использованием лазерного оборудования;
  • с использованием оптического оборудования и т.д.

Беспроводные оптические каналы связи

Для организации соединения отдельных ЛВС могут использоваться оптические линии, работающие в инфракрасном участке спектра. На отечественном рынке несколько компаний предлагают специальное оптическое оборудование.

Существуют решения по организации оптических каналов связи с использованием отечественного оборудования. Опыт применения БОКСов (беспроводных оптических каналов связи) показал их высокую надежность, возможность эксплуатации практически в любых погодных условиях. Использование БОКСов для организации корпоративной сети пивоваренного завода в Туле дал возможность снизить суммарную стоимость проекта на 70% (см. Сети и системы связи №9 стр.8).

В общем случае применение беспроводных оптических каналов связи целесообразно в следующих случаях:

  • создания основного и/или резервного канала связи;
  • объединения нескольких локальных вычислительных сетей;
  • для решения проблемы "последней мили";
  • аварийной связи, когда необходимо быстрое развертывание;
  • для связи типа "точка-точка" при максимальном удалении между "точками" до 1 км;
  • создание магистральных каналов;
  • для организации доступа к общим и ведомственным сетям передачи данных или для доступа в сеть Интернет.

Наиболее типично применение оптических каналов связи для создания беспроводных соединений между отдельными зданиями, разделенными преградами: дорогами, площадями, железнодорожной полосой, водной преградой, промышленной зоной и т.д.

Для кого может представлять интерес такие решения? Это могут быть предприятия:

  • расположенные в нескольких отдельно стоящих зданиях на расстоянии до 1 км друг от друга;
  • имеющие интенсивный трафик данных;
  • имеющие несколько локальных вычислительных сетей и удаленных терминалов;
  • предъявляющие повышенные требования к надежности функционирования всей сети;
  • решающие задачу распределенной обработки информации в единой корпоративной сети.

Оптическая передача данных

Рассмотрим коротко процесс передачи данных с использованием оптического канала. Через устройство сопряжения сетевой трафик из кабеля (витая пара или волоконная оптика) доставляется к светодиоду, работающим в инфракрасном диапазоне спектра. Сигнал передается узко направленным световым лучом в принимающий фотодиод на другом конце сети. Полученный световой сигнал демодулируется и преобразуется в коммуникационный протокол.

Следует иметь в виду, что для организации дуплексных конфигураций необходим комплект оборудования, состоящий из 2-х приемников и 2-х передатчиков БОКС-10МПД.

Беспроводные оптические каналы связи обладают рядом преимуществ:

  • сравнительно низкая стоимость оборудования;
  • высокая надежность передачи информации. Тестирование работы БОКСов при организации беспроводного объединения ЛВС в Туле показало, что надежность и качество передачи данных такое же как и при обычной передаче по кабелю;
  • Компактность и малый вес, что существенно облегчает как установку, так и демонтаж системы. Устройства могут легко крепиться к стенам зданий, столбам и т.д.;
  • Простота эксплуатации (все что требуется — это периодически (не часто) протирать линзы);
  • Минимальные сроки установки — быстрый ввод в эксплуатацию (2-3 часа);
  • скорость передачи информации до 10 Мбит/с
  • установка БОКСов не требует согласования в органах Госсвязьнадзора;
  • повышенная устойчивость к помехам;
  • работа в любых погодных условиях (снег, дождь и т.д.);
  • инфракрасное излучение безвредно для человека.
  • Возможность передачи большого количества данных;
  • Высокая скорость соединения
  • Нет необходимости занимать частоты;

Следует оговориться, что несмотря на малые сроки установки системы, нужен определенный навык. Поэтому лучше обратиться к специалистам, которые сумеют выполнить все требования, предъявляемые к монтажу, и будут нести ответственность за работу системы.

Спектр БОКСов достаточно широк и подходит для большого круга задач. В таблице приведен перечень устройств, предлагающихся на рынке России и их краткие характеристики.

Оборудование БОКС

Наименование Скорость Рабочая дистанция Возможная дистанция*
БОКС-100М 100 Mbps до 0,5 км до 1 км
БОКС-10МПД 20 Mbps до 1 км до 2 км
БОКС-10М 10 Mbps до 0,5 км до 1 км
БОКС-10МЛ 10 Mbps до 0,25 км до 0,5 км
БОКС-Е2 8 Mbps до 0,5 км до 1 км
БОКС-Е1 2 Mbps до 1 км до 3 км
БОКС-1024 1 Mbps до 1,5 км до 4 км
БОКС-512 512 Kbps до 1,8 км до 5 км
БОКС-256 256 Kbps до 2,3 км до 6,5 км
БОКС-128 128 Kbps до 2,6 км до 8 км
БОКС-64 64Kbps до 3 км до 10 км

Как видно из таблицы, рабочая дистанция зависит от конкретной модели. Все устройства обеспечивают непрерывное функционирование канала связи в условиях дождя, снега, тумана. Стоит заметить, что теоретическое (расчетное) расстояние превышает рабочее в 3 раза. Рассмотрим характеристики нескольких устройств.

Базовое изделие семейства — БОКС-10М, предназначено для создания канала передачи данных стандарта Ethernet. Устройство производит преобразование электрических сигналов стандарта IEEE 802.3 (Ethernet) в оптические инфракрасного диапазона (850 — 890 нм), передает их в атмосфере остронаправленным лучом, с последующим приемом на другой стороне и преобразованием оптического сигнала в электрический.

БОКС-10М состоит из двух одинаковых приемопередатчиков (оптических труб), устанавливаемых на обеих сторонах канала связи.

Каждый блок состоит из приемопередающего модуля, козырька, интерфейсного кабеля (длиной 5 метров), системы наведения, кронштейна, блока питания и блока доступа.

Приемопередающий модуль — это передатчик остронаправленного оптического излучения инфракрасного диапазона, состоящий из инфракрасного полупроводникового светодиода и приемника — высокочувствительного светодиода. Светодиоды работают на длине волны 0,87 мкм. Характеристики устройства представлены в таблице:

Технические характеристики

Общие
Скорость передачи информации 10 Мбит/с
Режим передачи Полудуплексный, по стандарту IEEE 802.3
Рабочая дистанция до 500 м
Режим работы непрерывный
менее 10 -9
Время наработки на отказ не менее 100 000 часов
Источник излучения Инфракрасный светодиод
Приемник
Сетевые
Интерфейс Ethernet 10Base-T
UTP 5cat — 100 Ом
Физические
Длина волны 0,87 мкм
Частота 344 828 ГГц
200 мВт
Расходимость луча не более 2 м на расстоянии 500 м
Электрические
220 В +10%, 50 Гц
12 В +10%, 50 Гц
не более 40 Вт
Атмосферные
Рабочий диапазон температур от -40 до +50 °С
84-106,7 кПа
505×142×250 мм
Масса одного устройства не более 8 кг
Исполнение

Беспроводной Оптический Канал Связи БОКС-10МПД

Принцип действия этой модели аналогичен БОКС-10М.

  • большая рабочая дистанция
  • разнесенный приемник и передатчик (независимые корпуса);
  • полный дуплекс

Технические характеристики

Общие
Скорость передачи информации 10 Мбит/с (20 Мбит/с)
Режим передачи Дуплексный, по стандарту IEEE 802.3
Рабочая дистанция до 1000 м
Режим работы непрерывный
Вероятность возникновения ошибки менее 10 -9
Время наработки на отказ не менее 100 000 часов
Источник излучения Инфракрасный светодиод
Приемник Высокочувствительный фотодиод
Сетевые
Интерфейс Ethernet 10Base-T
Импеданс интерфейсного кабеля UTP 5cat — 100 Ом
Физические
Длина волны 0,87 мкм
Частота 344 828 ГГц
Выходная мощность передатчика 400 мВт
Расходимость луча не более 4 м на расстоянии 1000 м
Электрические
Входное питание (на блок питания) 220 В +10%, 50 Гц
Выходное питание (от блока питания) 12 В +10%, 50 Гц
Потребляемая мощность при включенном термостате системы не более 100 Вт
Атмосферные
Рабочий диапазон температур от -40 до +40 °С
Отн. влажность окружающего воздуха до 100% (во всем диапазоне температур)
Рабочий диапазон атмосферного давления 84-106,7 кПа
Размеры и исполнение (каждого корпуса)
Размеры одного устройства (без кронштейна) 500×120×220 мм
Масса одного устройства не более 8 кг
Исполнение Всепогодное, с термостатом и системой предотвращения запотевания оптики

Беспроводной оптический канал связи БОКС — Е1

Принцип действия и состав этой модели аналогичен БОКС-10МПД. Существенные отличия — большая рабочая и максимальная дистанции, соответствует спецификации СCITT G.703.

БОКС-Е1 предназначен для подключения аппаратуры со стандартными цифровыми интерфейсами к каналам E1 (или T1), реализованным по рекомендации G.703. Эти каналы используются в цифровых системах передачи (например в ИКМ-30, наиболее распространенной в российских телефонных сетях).

Технические характеристики

Общие
Скорость передачи информации 2 Мбит/с
Режим передачи Синхронный, дуплексный
Рабочая дистанция 30-2000 м
Режим работы непрерывный
Вероятность возникновения ошибки менeе 10 -9
Время наработки на отказ не менее 100 000 часов
Источник излучения Инфракрасный диод
Приемник-детектор фотодиод
Сетевые
Интерфейс Е1 (ИКМ-30)
Линия витая пара 120 Ом
Разъем для подключения линии RJ-11
Физические
Длина волны 0,87 мкм
Частота 344 828 ГГц
Выходная мощность 400 мВт
Расходимость луча не более 4 м / 1 км
Электрические
Входное питание (основное) 220 В, 50 Гц
Входное питание (резервное) -48 В
Автоматическое переключение питания
Потребляемая мощность при включенном термостате системы не более 50 Вт
Атмосферные
Рабочий диапазон температур от -40 до +40 °С
Отн. влажность окружающего воздуха до 100% (во всем диапазоне температур)
Рабочий диапазон атмосферного давления 84-106,7 кПа
Размеры и исполнение
Размеры одного устройства (без кронштейна) 500×120×220 мм
Масса одного устройства не более 8 кг
Исполнение Всепогодное, с термостатом и системой предотвращения запотевания оптики

Монтаж

Приемопередатчики могут устанавливаться на поверхности крыш или стен. БОКС монтируется на металлической опоре, которая обеспечивает возможность регулировки угла наклона по горизонтали и по вертикали. В обоих плоскостях угол наклона не превышает 45 градусов, что вполне достаточно для точной наводки 2-х труб друг относительно друга.

Подключение примепередатчика осуществляется через специальный блок доступа. В качестве соединительных кабелей обычно используют витую пару категории 5 (UTP). С одной стороны блок доступа соединяется с компьютером или с сетевым устройством, если идет соединение с ЛВС. В качестве сетевого устройства используется либо маршрутизатор, либо коммутатор. Со стороны оптического канала блок доступа соединяется с приемо-передатчиком интерфейсным кабелем. В качестве интерфейсного кабеля используется обычная витая пара, снабженная специальными разъемами.

И блок доступа и блок питания приемопередатчика всегда устанавливаются внутри помещения и рядом с друг с другом. Оба крепятся на стене или в стойке, которая используется для оборудования ЛВС.

Для успешного монтажа необходимо выполнить ряд требований:

  • здания должны находится в пределах прямой видимости. На всем пути луч не должен встречать непрозрачных препятствий.
  • устройства должны располагаться на некотором возвышении над землей. Особенно это требование актуально для городских условий. Лучше, если никто не сможет задеть подобное устройство. Это может плохо кончиться как для пешехода, так и для БОКСа. Учитывая страсть наших граждан к свободно стоящей (висящей) аппаратуре, то будет лучше, если устройство будет находиться как можно выше над землей и в трудно доступном месте;
  • при установке системы следует избегать ориентации приемопередатчиков в направлении восток-запад. Такое, на первый взгляд, специфическое требование объясняется достаточно просто: солнечные лучи могут на несколько минут перекрыть излучение и передача может прекратиться;
  • на работу БОКСов может повлиять вибрация. Наличие рядом с устройством работающего генератора может привести к сдвигу трубы и разрыву соединения. Поэтому при выборе места крепления смотрите, чтобы вблизи не было моторов, компрессоров и т.д.

Типовые приложения

Точка-точка

Длина соединения "точка-точка" варьируется в зависимости от конкретной модели оборудования. При создании такого соединения следует всегда выбирать трассу таким образом, чтобы исключить появление в будущем непреодолимых препятствий, например рост деревьев. Установка приемопередатчиков может быть осуществлена как на крыше здания, так и на стене. Идеальная альтернатива любому кабельному решению по цене, скорости установки, ликвидности капиталовложений.

Точка доступа

Магистраль

Стандарт Ethernet (IEEE 802.3) определил, что между двумя узлами локальной сети может находиться не более 4 активных устройств: HUB-ов, репитеров. Однако это ограничение легко устраняется с помощью более интеллекутуальных устройств: коммутаторов, мостов, маршрутизаторов.

Наше оборудование (для локальных сетей) не относится к классу активных или пассивных устройств Ethernet, а является конвертером электрических сигналов в оптические. Поэтому при создании магистралей ограничение на 4 активных устройства не будет действовать, если в точке соединения двух отрезков магистрали для связи двух приемопередатчиков используется cross — over кабель. При соблюдении этого правила протяженность магистрали теоретически не ограничена.

Комбинация

На практике, наверное, этот способ самый распространенный. Он позволяет моделировать коммуникационную инфраструктуру в соответствии с решаемой задачей, целесообразностью, ценой и эффективностью. В умелом применении всех способов и технологий на практике состоит искусство системной интеграции.

Заключение

Так что же выбрать? Возможно, на этот вопрос поможет ответить таблица, приведенная ниже.

Ориентировочная стоимость Медный кабель Волоконно-оптический кабель Радиоканал Оптический канал Лазерный канал
$300-500 за 1 км до 5-6000 дол. за 1 км от 7 до 100 тыс. дол. за комплект 2000-4000 дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка — до 1 месяца; установка HDSL-модемов — несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка — несколько часов Подготовка монтажа 2-3 дня, установка 2-3 часа Подготовка работ 1-2 недели, установка — несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 10 Мб/c (в перспективе 100 Мбит/с) До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1 км (в перспективе 1,500) До 1,2 км

Практический опыт петербургской компании "Компьютерные системы Акрополис", которая в рамках долгосрочного проекта с ОАО "Пивоваренная компания Тульское пиво" применила БОКСы для объединения в единую корпоративную сеть вычислительных средств завода показал, что:

  • оборудование стабильно работает в условиях прямой видимости соединяемых объектов на расстояниях до 500м (модель БОКС-10М) и до 1000 м (модель БОКС-10МПД);
  • при этом обеспечивается надежная связь практически при любых погодных условиях;
  • достигаемое качество связи аналогично использованию обычного медного или оптоволоконного кабеля;
  • канал позволяет обмениваться данными на скоростях 10 Мб/с (комплект 10М), или 20 Мб/c (для 10МПД);
  • решение по установке ИК — оборудования позволило снизить общую стоимость проекта (включая стоимость оборудования и проделанных работ) на 60-70%.
Вверх