Принципы построения глобальной сети интернет. Новостной и аналитический портал "время электроники" Построение и название интернет сетей

Internet – всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающих друг с другом информацией по каналам общественных телекоммуникаций (выделенным телефонным аналоговым и цифровым линиям, оптическим каналам связи и радиоканалам, в том числе спутниковым линиям связи).

Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи.

Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через провайдера или корпоративную сеть. Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную сеть.

Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней. Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост – это любой компьютер, являющийся постоянной частью Internet, т. е. соединенный по Internet – протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Для подсоединения линий связи к компьютерам используются специальные электронные устройства, которые называются сетевыми платами, сетевыми адаптерами, модемами и т. д. Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами осуществляется по высокоскоростным каналам связи или магистралям. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть сети Интернет.

Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров, которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.

Передача информации в Интернет обеспечивается благодаря тому, что каждый компьютер в сети имеет уникальный адрес (IP-адрес), а сетевые протоколы обеспечивают взаимодействие разнотипных компьютеров, работающих под управлением различных операционных систем. В основном в Интернет используется семейство сетевых протоколов (стек) TCP/IP. На канальном и физическом уровне стек TCP/IP поддерживает технологию Ethernet, FDDI и другие технологии.

Основой семейство протоколов TCP/IP является сетевым уровенем, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень обеспечивает перемещение пакетов в сети и управляет их машрутизацией. Размер пакета, параметры передачи, контроль целостности осуществляется на транспортном уровне TCP. Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К основным прикладным протоколам относятся: протокол удаленного доступа telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы электронной почты: SMTP, POP, IMAP, MIME.

Начала сайтостроения Тема 1. Что такое сайт и как он устроен Слово сайт (англ. site) утвердилось в русской интернетовской терминологии сравнительно недавно. Раньше, в 1995 -1996 гг, в том же или примерно том же значении применялись сочетания "страница WWW", "узел WWW" или "WWW-сервер". На самом деле сайт, как информационная единица, – нечто принципиально отличное от сервера WWW (т. е. программы) или узла сети Интернет (т. е. компьютера). Сайт – это набор из нескольких десятков, сотен или даже тысяч веб-страниц, связанных вместе единой темой, общим оформлением, взаимными гипертекстовыми ссылками и, как правило, близким по интернетовским меркам размещением (обычно в пределах одного доменного имени).

Доменное имя – уникальное алфавитно-цифровое имя, идентифицирующее конкретный веб-узел. Доменные имена обычно состоят из двух и более частей, разделенных точкой. Левая часть доменного имени соответствует конечному узлу сети (т. е. является наиболее специфичной), в то время как правая часть является более общей. Каждая машина в сети может иметь несколько доменных имен, но при этом каждое доменное имя может указывать только на одну машину. Доменное имя выглядит, например, так: www. ru, www. tomsk. net, www. school. tomsk. ru. Веб-страница – это логическая единица Интернета, однозначно определяемая адресом (URL).

URL(от англ. Uniform Resource Locator) – унифицированный указатель информационного ресурса (стандартизованная строка символов, указывающая местонахождение документа в Интернете). Веб-страница может состоять из нескольких частей (фреймов), каждая из которых является отдельной страницей со своим собственным адресом, может быть статической или динамически сгенерированной.

Фреймы – элементы HTML, появившиеся в браузерах версий 3. 0. Позволяют разделить страницу на несколько независимых окон и в каждом из них размещать свою собственную веб-страничку. Возможна ссылка из одного окна в другое. Применяются в основном для организации постоянно находящихся на экране меню, в то время как в другом окне располагается непосредственно сама информация. Веб-страница может включать текст, гиперссылки, графические изображения, анимацию, звук, видеоизображение и скрипты.

Гиперссылка – текст в документе HTML, который обозначает ссылку на другую информацию в Сети. Чтобы отличить их от обычного текста, гиперссылки обычно выделяются жирным шрифтом или подчеркиванием. Скрипт - небольшая программа-сценарий, написанная на каком-либо языке программирования. Различают скрипты клиентской и серверной стороны. Скрипты клиентской стороны обычно пишутся на Java. Script для улучшения интерактивности странички. Серверные сценарии используются для динамической подготовки информации.

Принципиальное отличие веб-сайта от материальных носителей информации – нелинейность. Это значит, что отдельная страница сама по себе не имеет фиксированного положения в пространстве сайта, а набор из нескольких страниц не обязан складываться в линейную (или любую другую) последовательность. В то же время основные, магистральные связи между страницами, существующие на любом сайте, всегда складываются в некоторую структуру, отражающую внутренние связи содержимого. Два основных типа таких структур: древовидные (иерархические) и линейные (последовательные).

Древовидное строение сайта предполагает, что содержимое каждой страницы (кроме первой) входит на правах подраздела в страницу более высокого уровня. Такая структура имеет начало – первую страницу, корень дерева, но не имеет конца; вы можете спускаться и подниматься с уровня на уровень и перемещаться по горизонтали до тех пор, пока вам не надоест или пока вы не исчерпаете все содержимое. Древовидная структура лучше всего подходит для коллекций достаточно разнородного или сложно устроенного материала – каталогов, сборников статей или ссылок.

Если материал выстраивается в логическую структуру – как, к примеру, главы одной книги или последовательные шаги оформления заказа в электронном магазине – удобнее воспользоваться линейной структурой. Линейная цепочка страниц обязана иметь начало и конец, причем начинать знакомство с сайтом с одной из промежуточных страниц обычно смысла нет, так как вам будет значительно труднее поймать нить изложения, чем при древовидном расположении материала.

Динамические страницы размывают стройную структуру сайта. На многих современных сайтах просто невозможно точно сказать, из скольких страниц они состоят и сколько связей содержат. Динамическая страница – в отношении к HTMLстранице это страница элементов данных, которые сгенерированы из базы данных, т. е. страница, формируемая "на лету", в процессе обращения к базе данных. Такие страницы изменяются по мере прочтения и взаимодействия с ними посетителем.

IP-адресация в Интернет Каждый компьютер, подключенный к сети Интернет, имеет уникальный адрес. Адреса компьютеров имеют двойную кодировку: 1. Цифровой IP-адрес 2. DNS-адрес (доменный адрес) IP-адреса, представленные в цифровом виде (IPномера), состоят из четырех байтов, т. е. из 32 -разрядного двоичного числа, которое разделяется на четыре блока по 8 битов. Цифровой IP-адрес можно записать в виде четырех десятичных чисел, разделенных точками. Например: 195. 82. 54. 17. Каждое число не должно превышать двухсот пятидесяти шести.

Доменный адрес (DNS-адрес) состоит из нескольких доменов (буквенно-числовых обозначений), которые отделяются друг от друга точкой. Доменный адрес построен на основе иерархической классификации, т. е. доменный адрес включает в себя несколько уровней доменов, например: lessons-tva. info. Домен верхнего уровня располагается в имени правее, а домен нижнего уровня - левее. Пользователь сети Интернет работает не с IP-адресами, а только с доменными адресами. Преобразование DNS-адреса в цифровой IP-адрес осуществляет сервер имени домена DNS (Domain Name Server).

IP-адрес состоит из двух частей: номера сети и номера узла (компьютера) в сети. Если отдельный компьютер (хост-компьютер) или сеть являются составной частью сети Интернет, то IP-адрес присваивается специальным подразделением Интернета. Распределением IP адресов занимается организация ICANN (Internet Corporation for Assigned Names and Numbers), а в Европе распределением IP адресов между региональными провайдерами занимается RIPE. Адреса компьютеров в сети определяют администраторы сети.

Выделяют несколько классов IP-адресов: A, B, C. К классу A относятся адреса, в которых номер сети занимает один байт, а номер узла - три байта. Количество узлов в этой сети может достигать 224. Диапазон номеров сети A: 1. 0. 0. 0 - 126. 0. 0. 0. К классу B относятся адреса, в которых номер сети занимает два байта. Количество узлов в этой сети может достигать 216. Диапазон номеров сети B: 128. 0. 0. 0 191. 255. 0. 0.

К классу C относятся адреса, в которых номер сети занимает три байта. Количество узлов в этой сети может достигать 28 или 256. Диапазон номеров сети C: 192. 0. 1. 0 - 223. 255. 0.

При работе в Internet используются не доменные имена, а универсальные указатели ресурсов, называемые URL (Universal Resource Locator). URL - это адрес любого ресурса (документа, файла) в Internet, он указывает, с помощью какого протокола следует к нему обращаться, какую программу следует запустить на сервере и к какому конкретному файлу следует обратиться на сервере. Общий вид URL: протокол: //хост-компьютер/имя файла (например: http: //lessons-tva. info/book. html).

Программы для просмотра Web-страниц Одной из основных задача Internet является хранение и предоставление (по запросам) пользователям необходимой информации. Чтобы найти нужную информацию в Internet необходимо знать адрес Webстраницы (сайта), на которой эта информация находится, иметь установленную на ПК хотя бы одну из прикладных программ просмотра Web-страниц и иметь доступ к глобальной сети.

Программа для навигации (поиска информации в Internet) и просмотра Web-страниц называется браузером (browser). В настоящее время существует множество браузеров. Наиболее популярными являются графические браузеры (двумерные): Internet Explorer, Mozilla Firefox, Flock (Firefox и Flock основаны на коде Netscape), Opera , Netscape Navigator, Google Chrome и другие. Набирает популярность браузер Safari для Windows. Первый графический браузер - Viola появился в 1992 году. Сейчас ведутся разработки трёхмерных браузеров, например браузер Clara

Популярные текстовые браузеры (консольные браузеры) - это Lynx и Links (Links 2 поддерживает графику). Lynx и Links можно применять на различных платформах: Unix, Macintosh, Windows и других ОС. Эти браузеры целесообразно применять для слабых ПК и для низкоскоростных линий подключения к Интернет. Кроме того, эти браузеры можно применять для мощных ПК и скоростных линий с целью навигации или интернет-серфинга (для быстрого доступа к требуемой информации на сайтах), а для просмотра требуемых Web-страниц целесообразно использовать браузеры с графическим интерфейсом.

Браузеры являются клиентом World Wide Web, то есть прикладной программой, которая по запросу получает документы с Web-серверов, интерпретирует данные Web-страниц и отображает их на экране.

С помощью браузера можно легко произвести поиск нужной веб-страницы в Интернете, для этого требуется набрать одно или несколько слов в адресной строке (строке поиска) браузера и нажать Enter, чтобы начать поиск. Браузеры обеспечивают доступ не только к Webсерверам, но и к другим серверам Интернета (FTPсерверам, Gopher-серверам и серверам телеконференций Use. Net). Одним из самых популярных браузеров является Internet Explorer, так как приложение Internet Explorer входит в состав операционной системы Windows.

Почтовые приложения, почтовый интерфейс Электронная почта MAIL появилась до создания Интернет, т. е. до появления сетей с коммутацией пакетов на основе стека протоколов TCP/IP. В то время передача электронной почты между компьютерами осуществлялась посредством модемного соединения по протоколу UUCP (Unix-to-Unix Co. Py).

С введением доменной системы имен (Domain Name Server, DNS - сервер имени домена), в адрес электронной почты были введены доменные имена: имя_пользователя@имя_домена (пользователь такой-то на компьютере таком-то.), например tva-web@narod. ru. Символ @ – “эт коммерческий” в адресе электронной почты был использован разработчиком вместо предлога at (на). Для электронной почты стали использоваться выделенные серверы, почтовые ящики размещались на почтовых серверах, куда поступала почта, и откуда ее пользователи забирали. Для работы почтовых клиентов и серверов были разработаны специальные протоколы.

В настоящее время наиболее распространенными протоколами электронной почты являются: SMTP и POP 3. Письма отправляются в исходящий почтовый ящик по протоколу SMTP, а принимаются из входящего почтового ящика по протоколу POP 3 или протоколу доступа к сообщениям в Интернете l. MAP 4. В глобальной сети электронная почта передается между узлами (почтовыми серверами) с использованием программ пересылки почты. Для передачи электронных писем по сети используется метод коммутации сообщений.

Коммутация сообщений – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу блоков сообщений (без разбивки на пакеты). В настоящее время для работы с электронной почтой применяются как почтовые клиенты, так и почтовые веб–интерфейсы, которые располагаются на почтовых веб-серверах и предназначены для работы с электронной почтой. К почтовым прикладным программам относятся, например приложения: Outlook Express, The Bat, а почтовые веб–интерфейсы размещены на почтовых серверах: mail. ru, hotmail. ru и так далее.

Цель: ознакомиться со структурой и основными принципами работы всемирной сети Интернет, с базовыми протоколами Интернет и системой адресации.

Архитектура и принципы работы сети Интернет

Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и восприятия информации.

Глобальные сети (Wide Area Network, WAN) – это сети, предназначенные для объединения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. Глобальные сети объединяют пользователей, расположенных по всему миру, используя при этом самые разнообразные каналы связи.

Современный Интернет - весьма сложная и высокотехнологичная система, позволяющая пользователю общаться с людьми, находящимися в любой точке земного шара, быстро и комфортно отыскивать любую необходимую информацию, публиковать для всеобщего сведения данные, которые он хотел бы сообщить всему миру.

В действительности Internet не просто сеть, - это структура, объединяющая обычные сети. Internet - это «сеть сетей».

Чтобы описать сегодняшний Internet , полезно воспользоваться строгим определением.

В своей книге « The Matrix : Computer Networks and Conferencing Systems Worldwide » Джон Квотерман описывает Internet как «метасеть, состоящую из многих сетей, которые работают согласно протоколам семейства TCP/IP, объединены через шлюзы и используют единое адресное пространство и пространство имен» .

В Internet нет единого пункта подписки или регистрации, вместо этого вы контактируете с поставщиком услуг, который предоставляет вам доступ к сети через местный компьютер. Последствия такой децентрализации с точки зрения доступности сетевых ресурсов также весьма значительны. Среду передачи данных в Internet нельзя рассматривать только как паутину проводов или оптоволоконных линий. Оцифрованные данные пересылаются через маршрутизаторы , которые соединяют сети и с помощью сложных алгоритмов выбирают наилучшие маршруты для информационных потоков (рис.1).

В отличие от локальных сетей, в составе которых имеются свои высокоскоростные каналы передачи информации, глобальная (а так­же региональная и, как правило, корпоративная ) сеть включает под­сеть связи (иначе: территориальную сеть связи, систему передачи ин­формации), к которой подключаются локальные сети, отдельные ком­поненты и терминалы (средства ввода и отображения информации) (рис. 2).

Подсеть связи состоит из каналов передачи информации и коммуни­кационных узлов, которые предназначены для передачи данных по сети, выбора оптимального маршрута передачи информации, комму­тации пакетов и реализации ряда других функций с помощью компь­ютера (одного или нескольких) и соответствующего программного обеспечения, имеющихся в коммуникационном узле. Компьютеры, за которыми работают пользователи-клиенты, называются рабочими станциями , а компьютеры, являющиеся источниками ресурсов сети, предоставляемых пользователям, называются серверами . Такая струк­тура сети получила название узловой .

Рис.1 Схема взаимодействия в сети Интернет

Интернет – это глобальная информационная система, которая:

· логически взаимосвязана пространством глобальных уникальных адресов, основанных на Интернет-протоколе (IP);

· способна поддерживать коммуникации с использованием семейства протокола управления передачей - TCP/IP или его последующих расширений/преемников и/или других IP-совместимых протоколов;

· обеспечивает, использует или делает доступными на общественной или частной основе высокоуровневые услуги, надстроенные над описанной здесь коммуникационной и иной связанной с ней инфраструктурой.

Инфраструктура Интернет (рис.2):

1.магистральный уровень (система связанных высокоскоростных телекоммуникационных серверов).

2.уровень сетей и точек доступа (крупные телекоммуникационные сети), подключенных к магистрали.

3.уровень региональных и других сетей.

4.ISP – интернет-провайдеры.

5.пользователи.

К техническим ресурсам сети Интернет относятся компьютерные узлы, маршрутизаторы, шлюзы, каналы связи и др.


Рис.2 Инфраструктура сети Интернет

В основу архитектуры сетей положен многоуровневый принцип передачи сообщений . Формирование сообщения осуществляется на самом верхнем уровне модели ISO / OSI .. Затем (при передаче) оно после­ довательно проходит все уровни системы до самого нижнего, где и передается по каналу связи адресату. По мере прохождения каждого из уровней системы сообщение трансформируется, разбивается на сравнительно короткие части, которые снабжаются дополнительны­ ми заголовками, обеспечивающими информацией аналогичные уров­ ни на узле адресата. В этом узле сообщение проходит от нижнего уровня к верхнему, снимая с себя заголовки. В результате адресат принимает сообщение в первоначальном виде.

В территориальных сетях управление обменом данных осуществ­ ляется протоколами верхнего уровня модели ISO / OSI . Независимо от внутренней конструкции каждого конкретного протокола верхнего уровня для них характерно наличие общих функций: инициализация связи, передача и прием данных, завершение обмена. Каждый прото­ кол имеет средства для идентификации любой рабочей станции сети по имени, сетевому адресу или по обоим этим атрибутам. Активиза­ ция обмена информацией между взаимодействующими узлами начи­ нается после идентификации узла адресата узлом, инициирующим обмен данными. Инициирующая станция устанавливает один из ме­ тодов организации обмена данными: метод дейтаграмм или метод сеансов связи. Протокол предоставляет средства для приема/переда­ чи сообщений адресатом и источником. При этом обычно накладыва­ ются ограничения на длину сообщений.

T CP / IP - технология межсетевого взаимодействия

Наиболее распространенным протоколом управления обменом данных является протокол TCP/IP. Главное отличие сети Internet от других сетей заключается именно в ее протоколах TCP/IP , охватыва­ ющих целое семейство протоколов взаимодействия между компью­ терами сети. TCP/IP - это технология межсетевого взаимодействия, технология Internet . Поэтому г лобальная сеть, объединяющая мно­ жество сетей с технологией TCP/IP , называется Internet .

Протокол TCP/IP - это семейство программно реализованных протоколов старшего уровня, не работающих с аппаратными пре­ рываниями. Технически протокол TCP/IP состоит из двух частей - IP и TCP .

Протокол IP ( Internet Protocol - межсетевой протокол) является главным протоколом семейства, он реализует распространение ин­ формации в IP -сети и выполняется на третьем (сетевом) уровне моде ли ISO / OSI . Протокол IP обеспечивает дейтаграммную доставку паке­ тов, его основная задача - маршрутизация пакетов. Он не отвечает за надежность доставки информации, за ее целостность, за сохране­ ние порядка потока пакетов. Сети, в которых используется протокол IP , называются IP -сетями. Они работают в основном по аналоговым каналам (т.е. для подключения компьютера к сети требуется IP -мо­ дем) и являются сетями с коммутацией пакетов. Пакет здесь называ­ ется дейтаграммой.

Высокоуровневый протокол TCP ( Transmission Control Protocol - протокол управления передачей) работает на транспортном уровне и частично - на сеансовом уровне. Это протокол с установлением ло­ гического соединения между отправителем и получателем. Он обес­ печивает сеансовую связь между двумя узлами с гарантированной доставкой информации, осуществляет контроль целостности переда­ ваемой информации, сохраняет порядок потока пакетов.

Для компьютеров протокол TCP/IP - это то же, что правила раз­ говора для людей. Он принят в качестве официального стандарта в сети Internet , т.е. сетевая технология TCP/IP де-факто стала техноло­ гией всемирной сети Интернет.

Ключевую часть протокола составляет схема маршрутизации паке­тов, основанная на уникальных адресах сети Internet . Каждая рабо­ чая станция, входящая в состав локальной или глобальной сети, име­ ет уникальный адрес, который включает две части, определяющие адрес сети и адрес станции внутри сети. Такая схема позволяет пере­давать сообщения как внутри данной сети, так и во внешние сети.

АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ

Основные протоколы сети Интернет

Работа сети Internet основана на использовании семейств коммуникационных протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ). TCP/IP используется для передачи данных как в глобальной сети Internet , так и во многих локальных сетях.

Название TCP/IP определяет семейство протоколов передачи данных сети. Протокол - это набор правил, которых должны придерживаться все компании, чтобы обеспечить совместимость производимого аппаратного и программного обеспечения. Эти правила гарантируют совместимость производимого аппаратного и программного обеспечения. Кроме того, TCP /IP – это гарантия того, что ваш персональный компьютер сможет связаться по сети Internet с любым компьютером в мире, также работающим с TCP/IP. При соблюдении определенных стандартов для функционирования всей системы не имеет значения, кто является производителем программного обеспечения или аппаратных средств. Идеология открытых систем предполагает использование стандартных аппаратных средств и программного обеспечения. TCP/IP - открытый протокол и вся специальная информация издана и может быть свободно использована.

Различный сервис, включаемый в TCP/IP, и функции этого семейства протоколов могут быть классифицированы по типу выполняемых задач. Упомянем лишь основные протоколы, так как общее их число насчитывает не один десяток:

·транспортные протоколы - управляют передачей данных между двумя машинами:

·TCP / IP (Transmission Control Protocol ),

·UDP (User Datagram Protocol );

·протоколы маршрутизации - обрабатывают адресацию данных, обеспечивают фактическую передачу данных и определяют наилучшие пути передвижения пакета:

· IP (Internet Protocol),

· ICMP (Internet Control Message Protocol),

· RIP (Routing Information Protocol)

· и другие;

·протоколы поддержки сетевого адреса - обрабатывают адресацию данных, обеспечивают идентификацию машины с уникальным номером и именем:

· DNS (Domain Name System),

· ARP (Address Resolution Protocol)

· и другие;

·протоколы прикладных сервисов - это программы, которые пользователь (или компьютер) использует для получения доступа к различным услугам:

·FTP (File Transfer Protocol ),

· TELNET ,

· HTTP (HyperText Transfer Protocol)

·NNTP (NetNewsTransfer Protocol)

·и другие

Сюда включается передача файлов между компьютерами, удаленный терминальный доступ к системе, передача гипермедийной информации и т.д.;

·шлюзовые протоколы помогают передавать по сети сообщения о маршругазации и информацию о состоянии сети, а так же обрабатывать данные для локальных сетей:

· EGP (Exterior Gateway Protocol),

· GGP (Gateway-to-Gateway Protocol),

· IGP (Interior Gateway Protocol);

·другие протоколы – используются для передачи сообщений электронной почты, при работе с каталогами и файлами удаленного компьютера и так далее:

· SMTP (Simple Mail Transfer Protocol),

·NFS (Network File System ).

IP -адресация

Теперь подробнее остановимся на понятии IP -адреса.

Каждый компьютер в Internet (включая любой ПК, когда он устанавливает сеансовое соединение с провайдером по телефонной линии) имеет уникальный адрес, называемый IP -адрес .

IP -адрес имеет длину 32 бита и состоит из четырех частей по 8 бит, именуемых в соответствии с сетевой терминологией октетами (octets ) . Это значит, что каждая часть IP-адреса может принимать значение в пределах от 0 до 255. Четыре части объединяют в запись, в которой каждое восьмибитовое значение отделяется точкой. Когда речь идет о сетевом адресе, то обычно имеется в виду IP -адрес.

Если бы использовались все 32 бита в IP -адресе, то получилось бы свыше четырех миллиардов возможных адресов - более чем достаточно для будущего расширения Internet . Однако некоторые комбинации битов зарезервированы для специальных целей, что уменьшает число потенциальных адресов. Кроме того, 8-битные четверки сгруппированы специальными способами в зависимости от типа сети, так что фактическое число адресов еще меньше.

С понятием IP -адреса тесно связано понятие хоста (host ) . Некоторые просто отождествляют понятие хоста с понятием компьютера, подключенного к Internet . В принципе, это так, но в общем случае под хостом понимается любое устройство, использующее протокол TCP/IP для общения с другим оборудованием. То есть кроме компьютеров, это могут быть специальные сетевые устройства - маршрутизаторы (routers ), концентраторы (habs ) и другие. Эти устройства так же обладают своими уникальными I Р-адресами,- как и компьютеры узлов сети пользователей.

ЛюбойIP -адрес состоит из двух частей: адреса сети (идентификатора сети, Network ID ) и адреса хоста (идентификатора хоста, Host ID ) в этой сети . Благодаря такой структуре IP -адреса компьютеров в разных сетях могут иметь одинаковые номера. Но так как адреса сетей различны, то эти компьютеры идентифицируются однозначно и не могут быть перепутаны друг с другом.

IP-адреса выделяются в зависимости от размеров организации и типа ее деятельности. Если это небольшая организация, то, скорее всего в ее сети немного компьютеров (и, следовательно, IP -адресов). Напротив, у большой корпорации могут быть тысячи (а то и больше) компьютеров, объединенных во множество соединенных между собой локальных сетей. Для обеспечения максимальной гибкости IP -адреса разделяются на классы: А, В и С. Еще существуют классы D и Е , но они используются для специфических служебных целей.

Итак, три класса IP -адресов позволяют распределять их в зависимости от размера сети организации. Поскольку 32 бита - допустимый полный размер IP -адреса, то классы разбивают четыре 8-битные части адреса на адрес сети и адрес хоста в зависимости от класса.

Адрес сети класса A определяется первым октетом IP -адреса (считается слева направо). Значение первого октета, находящееся в пределах 1-126, зарезервировано для гигантских транснациональных корпорации и крупнейших провайдеров. Таким образом, в классе А в мире может существовать всего лишь 126 крупных компаний, каждая из которых может содержать почти 17 миллионов компьютеров.

Класс B использует 2 первых октета в качестве адреса сети, значение первого октета может принимать значение в пределах 128-191. В каждой сети класса В может быть около 65 тысяч компьютеров, и такие сети имеют крупнейшие университеты и другие большие организации.

Соответственно, в классе C под адрес сети отводится уже три первых октета, а значение первого октета может быть в пределах 192-223. Это самые распространенные сети, их число может превышать более двух миллионов, а число компьютеров (хостов) в каждой сети - до 254. Следует отметить, что «разрывы» в допустимых значениях первого октета между классами сетей появляются из-за того, что один или несколько битов зарезервированы в начале IP -адреса для идентификации класса.

Если любой IP -адрес символически обозначить как набор октетов w .x .y .z , то структуру для сетей различных классов можно представить в таблице 1.

Всякий раз, когда посылается сообщение какому-либо хост-компьютеру в Internet , IP -адрес используется для указания адреса отправителя и получателя. Конечно, пользователям не придется самим запоминать все IP -адреса, так как для этого существует специальный сервис TCP/IP, называемый Domain Name System (Доменная система имен)

Таблица 1. Структура IP-адресов в сетях различных классов

Класс сети

Значение первого октета (W)

Октеты номера сети

Октеты номера хоста

Число возможных сетей

Число хостов в таких сетях

1-126

x.y.z

128(2 7)

16777214(2 24)

128-191

w.x

y.z

16384(2 14)

65536(2 16)

192-223

w.x.y

2097151(2 21)

254(2 8)

Понятие маски подсети

Для того чтобы отделить идентификатор сети от идентификатора хоста, применяется специальное 32-битное число, называемое маской подсети (subnet mask ). Чисто внешне маска подсети представляет собой точно такой же набор из четырех октетов, разделенных между собой точками, как и любой IP -адрес. В таблице 2 приведены значения маски подсети для сетей класса A , B , C , используемые по умолчанию.

Таблица 2. Значение маски подсети (по умолчанию)

Класс сети

Значение маски в битах (двоичное представление)

Значение маски в десятичном виде

11111111 00000000 00000000 00000000

255.0.0.0

11111111 11111111 00000000 00000000

255.255.0,0

11111111 11111111 1111111100000000

255,255.255.0

Маска применяется также для логического разделения больших IP -сетей на ряд подсетей меньшего масштаба. Представим, к примеру, что в Сибирском Федеральном Университете, обладающего сетью класса B , имеется 10 факультетов и в каждом из них установлено по 200 компьютеров (хостов). Применив маску подсети 255.255.0.0, эту сеть можно разделить на 254 отдельных подсетей с числом хостов до 254 в каждой.

Значения маски подсети, применяемые по умолчанию, не являются единственно возможными. К примеру, системный администратор конкретной IP -сети может использовать и другое значение маски подсети для выделения лишь некоторых бит в октете идентификатора хоста.

Как зарегистрировать IP -сеть своей организации?

На самом деле, конечные пользователи не имеют отношения к этой задаче, которая ложиться на плечи системного администратора данной организации. В свою очередь, в этом ему оказывают содействие провайдеры Internet , обычно беря на себя все регистрационные процедуры в соответствующей международной организации, называемой InterNIC (Network Information Center ). Например, Сибирский федеральный университет желает получить адрес электронной почты в Internet , содержащий строку sfu -kras .ru . Такой идентификатор, включающий название фирмы, позволяет отправителю электронной почты определить компанию адресата.

Чтобы получить один из этих уникальных идентификаторов, называемых доменным именем, компания или провайдер посылает запрос в орган, который контролирует подключение к Internet - InterNIC . Если InterNIC (или орган, уполномоченный им для такой регистрации в данной стране) утверждает имя компании, то оно добавляется в базу данных Internet . Доменные имена должны быть уникальны, чтобы предотвратить ошибки. Понятие домена и его роль в адресации сообщений, пересылаемых по Internet , будут рассмотрены ниже. Дополнительную информацию о работе InterNIC можно узнать, посетив в Internet страницу http://rs.internic.ru .

ДОМЕННАЯ СИСТЕМА ИМЕН

Доменные имена

Кроме IP-адресов, для идентификации конкретных хостов в Сети используется так называемое доменное имя хоста (Domain host name) . Так же, как и IP-адрес, это имя является уникальным для каждого компьютера (хоста) , подключенного к Internet, - только здесь вместо цифровых значений адреса применяются слова.

В данном случае понятие домена означает совокупность хостов Internet, объединенных по какому-то признаку (например, по территориальному, когда речь идет о домене государства).

Разумеется, использование доменного имени хоста было введено только для того, чтобы облегчить пользователям задачу запоминания имен нужных им компьютеров. Сами компьютеры, по понятным причинам, в таком сервисе не нуждаются и вполне обходятся IP -адресами. Но вы только представьте, что вместо таких звучных имен как, www . microsoft . com или www . ibm . com вам пришлось бы запоминать наборы цифр, - 207.46.19.190 или 129.42.60.216 соответственно.

Если говорить о правилах составления доменных имен, то здесь нет столь жестких ограничений по количеству составных частей имени и их значениям, как в случае IP -адресов. Например, если в ХТИ – Филиале СФУ существует хост с именем khti , входящий в домен республики Хакасия khakassia , а тот, в свою очередь входит в домен России ru , то доменное имя такого компьютера будет khti . khakassia . ru . В общем случае число составляющих доменного имени может быть различным и содержать от одной и более частей, например, rage . mp 3. apple . sda . org или www . ru .

Чаще всего доменное имя компании состоит из трех составляющих, первая часть - имя хоста, вторая - имя домена компании, и последняя - имя домена страны или имя одного из семи специальных доменов, обозначающих принадлежность хоста, организации определенного профиля деятельности (см. табл. 1). Так, если ваша компания называется «KomLinc », то чаще всего Web -сервер компании будет назван www .komlinc .ru (если это российская компания), или, к примеру, www .komlinc .com , если вы попросили провайдера зарегистрировать вас в основном международном домене коммерческих организаций.

Последняя часть доменного имени называется идентификатором домена верхнего уровня (например, . ru или . com ). Существует семь доменов верхнего уровня, установленных InterNIC .

Таблица 1. Международные домены верхнего уровня

Имя домена

Принадлежность хостов домена

ARPA

Пра-пра... бабушка Internet , сеть ARPANet (выходит из употребления)

СОМ

Коммерческие организации (фирмы, компании, банки и так далее)

GOV

Правительственные учреждения и организации

EDU

Образовательные учреждения

MIL

Военные учреждения

NET

«Сетевые» организации, управляющие Internet или входящие в его структуру

ORG

Организации, которые не относятся ни к одной из перечисленных категорий

Исторически сложилось так, что эти семь доменов верхнего уровня по умолчанию обозначают факт географического расположения (принадлежащего к ним) хоста на территории США. Поэтому международный комитет InterNIC наряду с вышеперечисленными доменами верхнего уровня допускает применение доменов (специальных сочетаний символов) для идентификации иных стран, в которой находится организация-владелец данного хоста.

Итак, домены верхнего уровня подразделяютсяна организационные (см. табл.1)и территориаль­ные. Имеются двухбуквенные обозначения для всех стран мира: . ru - для России (пока в ходу и домен . su , объединяющий хосты на территории республик бывшего СССР), .са - для Канады, . uk - для Великобритании и т.д. Они обычно используются вместо одного из семи идентификаторов, перечисленных выше в таблице 1.

Территориальные домены верхнего уровня:

. ru (Russia )- Россия;

Su (Soviet Union ) - страны бывшего СССР, ныне ряд государств СНГ;

Uk (United Kingdom ) - Великобритания;

Ua (Ukraine ) - Украина;

Bg (Bulgaria ) - Болгария;

Hu (Hungary ) - Венгрия;

De (Deutchland ) - Германия, и др.

C полным списком всех доменных имен государств можно познакомиться на различных серверах в Internet .

Не все компании за пределами США имеют идентификаторы страны. В какой-то мере использование идентификатора страны или одного из семи идентификаторов, принятых в США, зависит от того, когда проводилась регистрация доменного имени компании. Так, компаниям, которые достаточно давно подключились к Internet (когда число зарегистрированных организаций было сравнительно невелико), был дан трехбуквенный идентификатор. Некоторые корпорации, работающие за пределами США, но регистрирующие доменное имя через американскую компанию, сами выбирают, использовать ли им идентификатор страны пребывания. Сегодня в России можно получить доменный идентификатор . com , для чего следует оговорить этот вопрос со своим провайдером Internet .

Как работают серверы DNS

Теперь поговорим о том, каким образом доменные имена преобразуются в понятные для компьютера IP -адреса.

Занимается этим Domain Name System (DNS , Доменная система имен) сервис, обеспечиваемый TCP/IP, который помогает в адресации сообщений. Именно благодаря работе DNS вы можете не запоминать IP -адрес, а использовать намного более простой доменный адрес. Система DNS транслирует символическое доменное имя компьютера в IP -адрес, находя запись в распределенной базе данных (хранящейся на тысячах компьютерах), соответствующую этому доменному имени. Стоит также отметить, что серверы DNS в русскоязычной компьютерной литературе часто называют «серверами имен».

Серверы имен корневой зоны

Хотя в мире насчитываются тысячи серверов имен, во главе всей системы DNS стоят девять серверов, названных серверами корневой зоны ( root zone servers ) . Серверы корневой зоны получили имена a . root _ server . net , b . root _ server . net и так далее вплоть до i . root _ server . net . Первый из них - a . root _ server . net - выступает в роли первичного сервера имен Internet , управляемого из информационного центра InterNIC , который регистрирует все домены, входящие в несколько доменов высшего уровня. Остальные серверы имен по отношению к нему вторичны, однако все хранят копии одних и тех же файлов. Благодаря этому любой из серверов корневой зоны может заменять и подстраховывать остальные.

На этих компьютерах размещена информация о хост-компьютерах серверов имен, обслуживающих семь доменов высшего уровня: .com , .edu , .mil , .gov , .net , .org и специального.arpa (рис.1). Любой из этих девяти серверов несет так же файл высшего уровня, как.uk (Великобритания), .de (Германия), .jp (Япония) и так далее.


Рис. 1. Иерархическая структура имен доменов Internet

В файлах корневой зоны содержатся все имена хост-компьютеров и IP -адреса серверов имен для каждого поддомена, входящего в домен высшего уровня. Другими словами, каждый корневой сервер располагает информацией обо всех доменах высшего уровня, а так же знает имя хост-компьютера и IP -адрес, по меньшей мере, одного сервера имен, обслуживающего каждый из вторичных доменов, входящих в любой домен высшего уровня. Для доменов иностранных государств в базе данных хранятся сведения по серверам имен для каждой страны. Например, в неком домене company . com файлы корневой зоны для домена содержат данные о сервере имен для любого адреса, заканчивающегося на company . com .

Кроме серверов имен корневой зоны существуют локальные серверы имен , установленные в доменах более низкого уровня. Локальный сервер имен кэширует список хост-компьютеров, поиск которых он производил в последнее время. Это устраняет необходимость постоянно обращаться в систему DNS с запросами о часто используемых хост-компьютерах. Кроме того, локальные серверы имен являются итерционными , а серверы корневой зоны - рекурсивными . Это значит, что локальный сервер имен будет повторять процедуру запроса информации о других серверах имен до тех пор, пока не получит ответа.

Корневые же серверы Internet , находящиеся на вершине структуры DNS , напротив, лишь выдают указатели на домены следующего уровня. Добраться до конца цепочки и получить требуемый IP -адрес - задача локального сервера имен. Чтобы решить ее, он должен спуститься по иерархической структуре, последовательно запрашивая у локальных серверов имен указатели на ее низшие уровни.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Основы построения сети интернет и ее базовые протоколы

Internet - всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающих друг с другом информацией по каналам общественных телекоммуникаций (выделенным телефонным аналоговым и цифровым линиям, оптическим каналам связи и радиоканалам, в том числе спутниковым линиям связи).

Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи.

Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи). Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через провайдера или корпоративную сеть.

Провайдер - поставщик сетевых услуг - лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную сеть.

Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней.

Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост - это любой компьютер, являющийся постоянной частью Internet, т.е. соединенный по Internet - протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Для подсоединения линий связи к компьютерам используются специальные электронные устройства, которые называются сетевыми платами, сетевыми адаптерами, модемами и т.д.

Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами осуществляется по высокоскоростным каналам связи или магистралям. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть сети Интернет.

Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.

Передача информации в Интернет обеспечивается благодаря тому, что каждый компьютер в сети имеет уникальный адрес (IP-адрес), а сетевые протоколы обеспечивают взаимодействие разнотипных компьютеров, работающих под управлением различных операционных систем.

В основном в Интернет используется семейство сетевых протоколов (стек) TCP/IP. На канальном и физическом уровне стек TCP/IP поддерживает технологию Ethernet, FDDI и другие технологии. Основой семейство протоколов TCP/IP является сетевой уровень, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень обеспечивает перемещение пакетов в сети и управляет их машрутизацией. Размер пакета, параметры передачи, контроль целостности осуществляется на транспортном уровне TCP.

Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К основным прикладным протоколам относятся: протокол удаленного доступа telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы электронной почты: SMTP, POP, IMAP, MIME.

2. Протоколы интернет

интернет сеть протокол сервер

Очевидно, что рано или поздно компьютеры, расположенные в разных точках земного шара, по мере увеличения своего количества должны были обрести некие средства общения. Такими средствами стали компьютерные сети. Сети бывают локальными и глобальными. Локальная сеть - это сеть, объединяющая компьютеры, географически расположенные на небольшом расстоянии друг от друга - например, в одном здании. Глобальные сети служат для соединения сетей и компьютеров, которых разделяют большие расстояния - в сотни и тысячи километров. Интернет относится к классу глобальных сетей.

Простое подключение одного компьютера к другому - шаг, необходимый для создания сети, но не достаточный. Чтобы начать передавать информацию, нужно убедиться, что компьютеры «понимают» друг друга. Как же компьютеры «общаются» по сети? Чтобы обеспечить эту возможность, были разработаны специальные средства, получившие название «протоколы». Протокол - это совокупность правил, в соответствии с которыми происходит передача информации через сеть. Понятие протокола применимо не только к компьютерной индустрии. Даже те, кто никогда не имел дела с Интернетом, скорее всего работали в повседневной жизни с какими-либо устройствами, функционирование которых основано на использовании протоколов. Так, обычная телефонная сеть общего пользования тоже имеет свой протокол, который позволяет аппаратам, например, устанавливать факт снятия трубки на другом конце линии или распознавать сигнал о разъединении и даже номер звонящего.

Исходя из этой естественной необходимости, миру компьютеров потребовался единый язык (то есть протокол), который был бы понятен каждому из них.

Основные протоколы используемые в работе Интернет:

3. Краткое описание протоколов

Над созданием протоколов, необходимых для существования глобальной сети, трудились лучшие умы человечества. Одним из них был Винтон Серф (Vinton G. Cerf). Сейчас этого человека называют «отцом Интернета». В 1997 году Президент США Билл Клинтон наградил Винтона Серфа и его коллегу Роберта Кана (Robert E. Kahn) Национальной медалью за заслуги в области технологии, отметив их вклад в становление и развитие Интернета. Ныне Винтон Серф занимает пост старшего вице-президента по Интернет-архитектуре в корпорации MCI WorldCom Inc.

В 1972 году группа разработчиков под руководством Винтона Серфа разработала протокол TCP/IP - Transmission Control Protocol/Internet Protocol (Протокол управления передачей / Протокол Интернета).

Эксперимент по разработке этого протокола проводился по заказу Министерства обороны США. Данный проект получил название ARPANet (Advanced Research Projects Agency Network - Сеть агентства важных исследовательских проектов). Очевидно, что в обстановке войны, когда необходимость в обмене информацией встает как никогда остро, возникает проблема непредсказуемости состояния пути, по которому будет передана та или иная информация - любой из узлов передачи в любой момент может быть выведен из строя противником. Поэтому главной задачей при разработке сетевого протокола являлась его «неприхотливость» - он должен был работать с любым сетевым окружением и, кроме того, обладать гибкостью в выборе маршрута при доставке информации.

Позже TCP/IP перерос свое изначальное предназначение и стал основой стремительно развивавшейся глобальной сети, ныне известной как Интернет, а также небольших сетей, использующих технологии Интернета - интранет. Стандарты TCP/IP являются открытыми и непрерывно совершенствуются.

На самом деле TCP/IP является не одним протоколом, а целым набором протоколов, работающих совместно. Он состоит из двух уровней. Протокол верхнего уровня, TCP, отвечает за правильность преобразования сообщений в пакеты информации, из которых на приемной стороне собирается исходное послание. Протокол нижнего уровня, IP, отвечает за правильность доставки сообщений по указанному адресу. Иногда пакеты одного сообщения могут доставляться разными путями.

Протокол HTTP (Hypertext Transfer Protocol - Протокол передачи гипертекста) является протоколом более высокого уровня по отношению к протоколу TCP/IP - протоколом уровня приложения. HTTP был разработан для эффективной передачи по Интернету Web-страниц. Именно благодаря HTTP мы имеем возможность созерцать страницы Сети во всем великолепии. Протокол HTTP является основой системы World Wide Web.

Вы отдаете команды HTTP, используя интерфейс браузера, который является HTTP-клиентом. При щелчке мышью на ссылке браузер запрашивает у Web-сервера данные того ресурса, на который указывает ссылка - например, очередной Web-страницы.

Чтобы текст, составляющий содержимое Web-страниц, отображался на них определенным образом - в соответствии с замыслом создателя страницы - он размечается с помощью особых текстовых меток - тегов языка разметки гипертекста (HyperText Markup Language, HTML).

Адреса ресурсов Интернета, к которым вы обращаетесь по протоколу HTTP, выглядит примерно следующим образом: http://www….

Протокол FTP (File Transfer Protocol - протокол передачи файлов) специально разработан для передачи файлов по Интернету. Позже мы поговорим о нем подробно. Сейчас скажем лишь о том, что адрес FTP-ресурса в Интернете выглядит следующим образом: ftp://ftp….

С помощью этого протокола вы можете подключиться к удаленному компьютеру как пользователь (если наделены соответствующими правами, то есть знаете имя пользователя и пароль) и производить действия над его файлами и приложениями точно так же, как если бы работали на своем компьютере.

Telnet является протоколом эмуляции терминала. Работа с ним ведется из командной строки. Если вам нужно воспользоваться услугами этого протокола, не стоит рыскать по дебрям Интернета в поисках подходящей программы. Telnet-клиент поставляется, например, в комплекте Windows 98.

Чтобы дать команду клиенту Telnet соединиться с удаленным компьютером, подключитесь к Интернету, выберите в меню Пуск (Start) команду Выполнить (Run) и наберите в строке ввода, например, следующее: telnet lib.ru

WAIS расшифровывается как Wide-Area Information Servers. Этот протокол был разработан для поиска информации в базах данных. Информационная система WAIS представляет собой систему распределенных баз данных, где отдельные базы данных хранятся на разных серверах. Сведения об их содержании и расположении хранятся в специальной базе данных - каталоге серверов. Просмотр информационных ресурсов осуществляется с помощью программы - клиента WAIS.

Поиск информации ведется по ключевым словам, которые задает пользователь. Эти слова вводятся для определенной базы данных, и система находит все соответствующие им фрагменты текста на всех серверах, где располагаются данные этой базы. Результат представляется в виде списка ссылок на документы с указанием того, насколько часто встречается в данном документе искомое слово и все искомые слова в совокупности.

Даже в наши дни, когда систему WAIS можно считать морально устаревшей, специалисты во многих областях при проведении научных исследований тем не менее обращаются к ней в поисках специфической информации, которую не могут найти традиционными средствами.

Адрес ресурса WAIS в Интернете выглядит примерно так: wais://site.edu.

Протокол Gopher - протокол уровня приложения, разработанный в 1991 году. До повсеместного распространения гипертекстовой системы World Wide Web Gopher использовался для извлечения информации (в основном текстовой) из иерархической файловой структуры. Gopher был провозвестником WWW, позволявшим с помощью меню передвигаться от одной страницы к другой, постепенно сужая круг отображаемой информации. Программы-клиенты Gopher имели текстовый интерфейс. Однако пункты меню Gopher могли указывать и не только на текстовые файлы, но также, например, на telnet-соединения или базы данных WAIS.

Gopher переводится как «суслик», что отражает славное университетское прошлое разработчиков этой системы. Студенческие спортивные команды Университета Миннесоты носили название Golden Gophers («Золотые суслики»).

Сейчас ресурсы Gopher можно просматривать с помощью обычного Web-браузера, так как современные браузеры поддерживают этот протокол.

Адреса информационных ресурсов Gopher имеют примерно следующий вид: gopher://gopher.tc.umn.edu.

WAP (Wireless Application Protocol) был разработан в 1997 году группой компаний Ericsson, Motorola, Nokia и Phone.com (бывшей Unwired Planet) для того, чтобы предоставить доступ к службам Интернета пользователям беспроводных устройств - таких, как мобильные телефоны, пейджеры, электронные органайзеры и др., использующих различные стандарты связи.

К примеру, если ваш мобильный телефон поддерживает протокол WAP, то, набрав на его клавиатуре адрес нужной Web-страницы, вы можете увидеть ее (в упрощенном виде) прямо на дисплее телефона. В настоящее время подавляющее большинство производителей устройств уже перешли к выпуску моделей с поддержкой WAP, который также продолжает совершенствоваться.

Размещено на Allbest.ru

Подобные документы

    Схема соединения компьютеров в локальной сети: линейная шина, звезда, кольцо. Аппаратное обеспечение: адаптер для передачи и према информации. Создание всемирной компьютерной сети Интернет. Базовые и прикладные протоколы. Способы подключения к интернету.

    презентация , добавлен 27.04.2015

    История возникновения глобальной компьютерной сети интернет. Компьютеры-серверы и компьютеры-клиенты. Провайдеры интернет и их сети. Доступ в интернет из локальной сети. Взаимодействие между клиентом и сервером. Приложения-серверы и приложения-клиенты.

    реферат , добавлен 13.10.2011

    Теоретические основы Интернет-технологий и основных служб сети Интернет. Ознакомление с возможностями подключения к сети Интернет. Основные службы сети. Принципы поиска информации в WWW. Обзор современных Интернет браузеров. Программы для общения в сети.

    курсовая работа , добавлен 18.06.2010

    Теоретические основы организации сети Интернет. Протоколы сети, сравнительный анализ программ браузеров. Тестирование на скорость, поддержка операционных систем. Оценка экономической целесообразности использования программ-браузеров на предприятии.

    дипломная работа , добавлен 18.07.2010

    Анализ системы распределенных локальных сетей и информационного обмена между ними через Интернет. Отличительные черты корпоративной сети, определение проблем информационной безопасности в Интернете. Технология построения виртуальной защищенной сети – VPN.

    курсовая работа , добавлен 02.07.2011

    Выбор и экономическое обоснование топологии сети. Стоимость аренды каналов связи у интернет-провайдеров. Выбор и расчет стоимости активного и пассивного оборудования. Масштабируемость сети по параметрам пользователи, трафик, физический размер сети.

    курсовая работа , добавлен 05.01.2013

    Сущность и классификация компьютерных сетей по различным признакам. Топология сети - схема соединения компьютеров в локальные сети. Региональные и корпоративные компьютерные сети. Сети Интернет, понятие WWW и унифицированный указатель ресурса URL.

    презентация , добавлен 26.10.2011

    Глобальная компьютерная сеть. Стандарт протоколов TCP/IP. Основные типы подключения к Интернет. Подключение через локальные сети. Выделенная линия или канал. Направления развития Internet. Локальные вычислительные сети. Адресация в сети Интернет.

    презентация , добавлен 28.10.2011

    Описание принципов функционирования протоколов, используемых во всемирной сети. Характеристика структуры и особенностей работы Интернета. Преимущества использования электронной почты, IP-телефонии, средств мгновенного обмена сообщениями (ICQ, Skype).

    реферат , добавлен 23.04.2011

    История создания Интернета - мировой компьютерной сети. Структура Глобальных сетей, IP-адреса и их классификация. Межсетевые, прикладные и транспортные протоколы и их функции, проблемы потери информации. Сквозные протоколы и шлюзы, разработка программы.

Internet – всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающих друг с другом информацией по каналам общественных телекоммуникаций (выделенным телефонным аналоговым и цифровым линиям, оптическим каналам связи и радиоканалам, в том числе спутниковым линиям связи).

Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи.

Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи). Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через провайдера или корпоративную сеть.

Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную сеть.

Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней.

История Интернета началась в конце 50-х годов ХХ века, а именно, когда в 1957 году в СССР запустили первый искусственный спутник. В разгар холодной войны «захват» Советским Союзом космического пространства представлял серьезную угрозу для США.

Необходимо было ускорить темпы разработок новейших систем защиты. С этой целью в 1957 году было создано Агентство перспективных исследований Министерства обороны США – ARPA. Эту организацию интересовал вопрос, можно ли соединять расположенные в разных местах компьютеры с помощью телефонных линий. Их целью являлась организация сети передачи данных, способной функционировать в условиях ядерного конфликта. В январе 1969 года впервые была запущена система, связавшая между собой 4 компьютера в разных концах США. А через год новая информационная сеть, названная ARPAnet, уже приступила к работе.

С каждым годом ARPAnet росла и развивалась и из военной и засекреченной сети становилась все более доступной для различных организаций.

В 1973 году сеть стала международной.

В 1983 году был введен в строй новый механизм доступа к ARPAnet, названный «протоколом TCP/IP». Этот протокол позволял с легкостью подключаться к Интернету при помощи телефонной линии.

В конце 80-х годов терпению военных пришел конец, так как сеть превратилась из секретной в общедоступную. Поэтому они отделили от сети часть для своих нужд, получившую название MILNet.


В конце 90-х годов стало возможным передавать по сети не только текстовую, но и графическую информацию и мультимедиа.

Одной из первых российских сетей, подключенных к Интернету, стала сеть Relcom (Релком), созданная в 1990 году на базе Российского центра «Курчатовский институт». В создании сети принимали участие специалисты кооператива «Демос» (сейчас это компания «Демос-Интернет»). Уже к концу года к Интернету было подключено 30 организаций. В 1991 году в компьютерной сети Relcom появился первый сервер новостей (электронных конференций). И очень скоро она объединила многие крупные города России (Екатеринбург, Барнаул и др.), а также некоторых других стран СНГ и стран Балтии.

Сегодня Интернет состоит из миллионов компьютеров, подключенных друг к другу при помощи самых разных каналов, от сверхбыстродействующих спутниковых магистралей передачи данных до медленных коммутируемых телефонных линий.

В настоящее время существует множество способов соединения с сетью Интернет от подключения компьютера посредством аналогового модема до способов подключения с использованием высокоскоростных технологий.
Способ подключения компьютера к сети Интернет зависит от используемого пользователем уровня услуг, которые он хочет получить от провайдера (поставщика услуг), от скорости и качества передачи данных. К услугам, которые предоставляются Интернет, относятся: E-mail, WWW, FTP, Usenet, IP - телефония, потоковое видео и т.д.
Способы подключения к Интернет можно классифицировать по следующим видам:

 коммутируемый доступ;

 доступ по выделенным линиям;

 доступ по широкополосной сети (DSL - Digital Subscriber Line);

 доступ к Интернет по локальной сети;

 спутниковый доступ в Интернет;

 доступ к Интернет с использованием каналов кабельной телевизионной сети;

 беспроводные технологии.
Для коммутируемого доступа, как правило, используется аналоговый модем и аналоговая телефонная линия, но применяется и коммутируемый доступ по цифровой телефонной сети ISDN (цифровая сеть связи с интеграцией услуг). Для подключения ПК к цифровой сети с интеграцией услуг ISDN используется ISDN-адаптер. Кроме того, коммутируемый доступ к Интернет может осуществляться с помощью беспроводных технологий: мобильный GPRS – Интернет и мобильный CDMA - Internet.
Доступ по выделенным каналам связи предполагает постоянный канал связи от помещений с компьютером до коммутатора, принадлежащего ISP (провайдеру). Этот способ доступа обеспечивает подключение компьютера все 24 часа в сутки. Перспективным методом подключения к Интернет, как для физических лиц, так и для компаний является широкополосная сеть DSL. Digital Subscriber Line - семейство цифровых абонентских линий, предназначенных для организации доступа по аналоговой телефонной сети, используя DSL/кабельный модем. Этот способ обеспечивает передачу данных до 50 Мбит/с.
Доступ к Интернет по локальной сети с архитектурой Fast Ethernet обеспечивает пользователю доступ к ресурсам глобальной сети Интернет и ресурсам локальной сети. Подключение осуществляется с помощью сетевой карты (10/100 Мбит/с) со скоростью передачи данных до 1 Гбит/с на магистральных участках и 100 Мбит/сек для конечного пользователя.
Спутниковый доступ к Интернет (DirecPC, Europe Online) является популярным для пользователей удаленных районов. Максимальная скорость приема данных до 52,5 Мбит/с (реальная средняя скорость до 3 Мбит/с).
Пользователи кабельного телевидения для подключения к Интернет могут использовать каналы кабельной телевизионной сети, при этом скорость приема данных от 2 до 56 Мб/сек. Для организации подключения к кабельной телевизионной сети используется кабельный модем.
В последнее время все более популярными становятся беспроводные методы подключения к Интернет. К беспроводным технологиям последней мили относятся: WiFi, WiMax, RadioEthernet, MMDS, LMDS, мобильный GPRS – Интернет, мобильный CDMA – Internet.


Министерство образования и науки Республики Казахстан
Казахстанско-Американский свободный университет
Кафедра «Бизнеса»

РЕФЕРАТ

на тему: «Принципы построения глобальных сетей»

Выполнила: Помолова Н. А.

              Студент 2 курса,
Факультета «менеджмент»
Проверил: Четтыкбаев Р.К.

Усть-Каменогорск, 2010


Содержание

ВВЕДЕНИЕ………………………………………………………… …………….3
1. ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ…………………………………3
1.1 Принципы построения и функции глобальных компьютерных сетей……3
1.2 Коммуникационное оборудование глобальных сетей……………………..5
1.3Сетевые технологии. Глобальные сети с коммутацией каналов…………8
1.3.1 Глобальные сети с коммутацией пакетов.…………………………...…...9
2. СЕТЬ INTERNET.……………………………………………………… …......10
2.1 Создание и развитие Internet……………………………………………….. 10
2.2 Способы доступа в Internet………………………………… ……………...12
2.3 Адресация в сети Internet…………………………………………………... .15

2.4 Семейство протоколов TCP/IP………………………………………….…..16
2.5 Электронная почта……………………………………………………….... ..22
ЗАКЛЮЧЕНИЕ…………………………………………………… ……………. 23
БИБЛИОГРАФИЧЕСКИЙ СПИСОК…………………………………………..23


Введение

Современное человеческое общество живет в период, характеризующийся небывалым ростом объема информационных потоков. Это относится как к экономике, так и к социальной сфере. Рыночные отношения предъявляют повышенные требования к своевременности, достоверности, полноте информации. Применение современных электронных вычислительных машин дает возможность переложить трудоемкие операции на автоматические или автоматизированные устройства, которые могут работать со скоростью, превышающей скорость обработки информации человеком в миллионы раз. Использование ЭВМ приводит к коренной перестройке технологии производства практически во всех отраслях промышленности, коммерческой и финансово-кредитной деятельности и, как следствие, к повышению производительности и улучшению условий труда людей. Именно поэтому современный специалист должен владеть теоретическими знаниями в области информатики и практическими навыками использования вычислительной техники, техники связи и других средств управления. Расширение локально-вычислительных сетей и удлинение линий связи привело к необходимости создания глобальных сетей, в состав которых входят локальные, региональные сети и отдельные ПК. Для соединения ПК и сетей в глобальной сети используются специальные линии связи: волоконно-антические, телефонные, спутниковые и т.д. Скорость передачи в таких линиях зависит от качества всех составляющих. Наиболее массовым каналом передачи данных является телефонные линии. Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.
Объединение большого числа локально-вычислительных сетей привело в итоге к созданию всемирной компьютерной сети – Интернет.

1 ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ
1.1 Принципы построения и функции глобальных компьютерных сетей
Появление потребности в соединении компьютеров, находящихся на большом расстоянии друг от друга - дало начала для решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер. Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым механизмом любой вычислительной сети. На основе этого механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными сетевые службы.
Таким образом, хронологически первыми появились глобальные сети (Wide Area Networks, WAN), то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно находящиеся в различных городах и странах. Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи и концепции современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов, маршрутизация пакетов в составных сетях.
Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и распространенных глобальных сетей - телефонных. Главным, результатом создания первых глобальных компьютерных сетей был отказ от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося в телефонных сетях. Выделяемый на все время сеанса связи составной канал с постоянной скоростью не мог эффективно использоваться пульсирующим трафиком компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Натурные эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается сетями, использующими принцип коммутации пакетов, когда данные разделяются на небольшие порции - пакеты которые самостоятельно перемещаются по сети за счет встраивания адреса конечного узла в заголовок пакета. Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, то в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой (десятки килобит в секунду), набор предоставляемых услуг в глобальных сетях такого типа обычно ограничивался передачей файлов, преимущественно в фоновом режиме, и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток - они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи низкого качества, отличаются сложными процедурами контроля и восстановления данных. Типичным примером таких сетей являются сети Х.25, разработанные еще вначале 70-х, когда низкоскоростные аналоговые каналы, арендуемые у телефонных компаний, были преобладающим типом каналов, соединяющих компьютеры и коммутаторы глобальной вычислительной сети. Прогресс глобальных компьютерных сетей во многом определялся прогрессом телефонных сетей. С конца 60-х годов в телефонных сетях все чаще стала применяться передача голоса в цифровой форме, что привело к появлению высокоскоростных цифровых каналов, соединяющих АТС и позволяющих одновременно передавать десятки и сотни разговоров. Была разработана специальная технология плезиохронной цифровой иерархии (Plesiochronous Digital Hierarchy, PDH), предназначенная для создания так называемых первичных, или опорных, сетей. Такие сети не предоставляют услуг конечным пользователям, они являются фундаментом, на котором строятся скоростные цифровые каналы "точка-точка", соединяющие оборудование другой (так называемой наложенной) сети, которая уже работает на конечного пользователя. Первоначально технология PDH, поддерживающая скорости до 140 Мбит/с, была внутренней технологией телефонных компаний. Однако со временем эти компании стали сдавать часть своих каналов PDH в аренду предприятиям, которые использовали их для создания собственных телефонных и глобальных компьютерных сетей. Появившаяся в конце 80-х годов технология синхронной цифровой иерархии (Synchronous Digital Hierarchy, SDH) расширила диапазон скоростей цифровых каналов до 10 Гбит/с, а технология спектрального мультиплексирования (Dense Wave Division Multiplexing, DWDM) - до сотен гигабит и даже нескольких теребит в секунду. К настоящему времени глобальные сети по разнообразию и качеству сервисов догнали локальные сети, которые долгое время были лидерами в этом отношении, хотя и появились на свет значительно позже.

1.2 Коммуникационное оборудование глобальных сетей
Типичный пример структуры глобальной компьютерной сети приведен на (рис. 1) Здесь используются следующие обозначения: S (switch) - коммутаторы, К - компьютеры, R (router) - маршрутизаторы, MUX (multiplexor)- мультиплексор, UNI (User-Network Interface) - интерфейс пользователь - сеть и NNI (Network-Network Interface) - интерфейс сеть - сеть. Кроме того, офисная АТС обозначена аббревиатурой РВХ, а маленькими черными квадратиками - устройства DCE,о которых будет рассказано ниже.
Рис. 1 Пример структуры глобальной сети
Сеть строится на основе некоммутируемых (выделенных) каналов связи, которые соединяют коммутаторы глобальной сети между собой. Коммутаторы называют также центрами коммутации пакетов (ЦКП) , то есть они являются коммутаторами пакетов, которые в разных технологиях глобальных сетей могут иметь и другие названия - кадры, ячейки cell. Как и в технологиях локальных сетей принципиальной разницы между этими единицами данных нет, однако в некоторых технологиях есть традиционные названия, которые к тому же часто отражают специфику обработки пакетов. Например, кадр технологии frame relay редко называют пакетом, поскольку он не инкапсулируется в кадр или пакет более низкого уровня и обрабатывается протоколом канального уровня.
Коммутаторы устанавливаются в тех географических пунктах, в которых требуется ответвление или слияние потоков данных конечных абонентов или магистральных каналов, переносящих данные многих абонентов. Абоненты сети подключаются к коммутаторам в общем случае также с помощью выделенных каналов связи. Эти каналы связи имеют более низкую пропускную способность, чем магистральные каналы, объединяющие коммутаторы, иначе сеть бы не справилась с потоками данных своих многочисленных пользователей. Для подключения конечных пользователей допускается использование коммутируемых каналов, то есть каналов телефонных сетей, хотя в таком случае качество транспортных услуг обычно ухудшается. Принципиально замена выделенного канала на коммутируемый ничего не меняет, но вносятся дополнительные задержки, отказы и разрывы канала по вине сети с коммутацией каналов, которая в таком случае становится промежуточным звеном между пользователем и сетью с коммутацией пакетов. Кроме того, в аналоговых телефонных сетях канал обычно имеет низкое качество из-за высокого уровня шумов. Применение коммутируемых каналов на магистральных связях коммутатор-коммутатор также возможно, но по темже причинам весьма нежелательно. Конечные узлы глобальной сети более разнообразны, чем конечные узлы локальной сети. На (рис.1) показаны основные типы конечных узлов глобальной сети: отдельные компьютеры. Все эти устройства вырабатывают данные для передачи в глобальной сети, поэтому являются для нее устройствами типа DTE (Data Terminal Equipment). Локальная сеть отделена от глобальной маршрутизатором или удаленным мостом (который на рисунке не показан), поэтому для глобальной сети она представлена единым устройством DTE - портом маршрутизатора или моста.При передаче данных через глобальную сеть мосты и маршрутизаторы , работают в соответствии с той же логикой, что и при соединении локальных сетей. Мосты, которые в этом случае называются удаленными мостами (remote bridges) , строят таблицу МАС - адресов на основании проходящего через них трафика, и по данным этой таблицы принимают решение - передавать кадры в удаленную сеть или нет. полезным. Маршрутизаторы принимают решение на основании номера сети пакета какого-либо протокола сетевого уровня (например, IP или IPX) и, если пакет нужно переправить следующему маршрутизатору по глобальной сети, например frame relay, упаковывают его в кадр этой сети, снабжают соответствующим аппаратным адресом следующего маршрутизатора и отправляют в глобальную сеть.
Мультиплексоры «голос - данные» предназначены для совмещения в рамках одной территориальной сети компьютерного и голосового трафиков. Так как рассматриваемая глобальная сеть передает данные в виде пакетов, то мультиплексоры «голос - данные», работающие на сети данного типа, упаковывают голосовую информацию в кадры или пакеты территориальной сети и передают их ближайшему коммутатору точно так же, как и любой конечный узел глобальной сети, то есть мост или маршрутизатор. Если глобальная сеть поддерживает приоритезацию трафика, то кадрам голосового трафика мультиплексор присваивает наивысший приоритет, чтобы коммутаторы обрабатывали и продвигали их в первую очередь. Приемный узел на другом конце глобальной сети также должен быть мультиплексором «голос - данные», который должен понять, что за тип данных находится в пакете - замеры голоса или пакеты компьютерных данных, - и отсортировать эти данные по своим выходам. Голосовые данные направляются офисной АТС, а компьютерные данные поступают через маршрутизатор в локальную сеть.
Так как конечные узлы глобальной сети должны передавать данные по каналу связи определенного стандарта, то каждое устройство типа DTE требуется оснастить устройством типа DCE (Data Circuit terminating Equipment) которое обеспечивает необходимый протокол физического уровня данного канала. В зависимости от типа канала для связи с каналами глобальных сетей используются DCE трех основных типов: модемы для работы по выделенным и коммутируемым аналоговым каналам, устройства DSU/CSU для работы по цифровым выделенным каналам сетей технологии TDM и терминальные адаптеры (ТА) для работы по цифровым каналам сетей ISDN. Устройства DTE и DCE обобщенно называют оборудованием, размещаемым на территории абонента глобальной сети - Customer Premises Equipment, CPE. Поэтому в глобальной сети обычно строго описан и стандартизован интерфейс «пользователь-сеть» (User-to-Network Interface, UNI). Это необходимо для того, чтобы пользователи могли без проблем подключаться к сети с помощью коммуникационного оборудования любого производителя, который соблюдает стандарт UNI данной технологии (например, Х.25). Протоколы взаимодействия коммутаторов внутри глобальной сети, называемые интерфейсом «сеть-сеть»(Network-to-Network Interface, NNI) , стандартизуются не всегда. Считается, что организация, создающая глобальную сеть, должна иметь свободу действий, чтобы самостоятельно решать, как должны взаимодействовать внутренние узлы сети между собой. В связи с этим внутренний интерфейс, в случае его стандартизации, носит название «сеть-сеть», а не «коммутатор-коммутатор», подчеркивая тот факт, что он должен использоваться в основном при взаимодействии двух территориальных сетей различных операторов

1.3 Сетевые технологии. Глобальные сети с коммутацией каналов
Глобальные сети Wide Area Networks (WAN), которые относятся к территориальными компьютерными сетями, предназначены, как и локальные сети для предоставления услуг, но значительно большему количеству пользователей, находящихся на большой территории.
Методы коммутации: В глобальных сетях существует три принципиально различные схемы коммутации:

    коммутация каналов
    коммутация сообщений
    коммутация пакетов
Коммутация каналов в глобальных сетях – процесс, который по запросу осуществляет соединение двух или более станций данных и обеспечивает монопольное использование канала передачи данных до тех пор, пока не произойдет разъединение. Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой – коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети.
Коммутация сообщений в глобальных сетях – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу сообщений без нарушения их целостности. Используются в тех случаях, когда не ожидается немедленной реакции на сообщение. Сообщения передаются между транзитными компьютерами сети с временной буферизацией их на дисках каждого компьютера.
Сообщениями - называются данные, объединенные смысловым содержанием, имеющие определенную структуру и пригодные для обработки, пересылки или использования.
Источниками сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений – телевидение, текста – телеграф (телетайп), данных – вычислительные сети. Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы online. При существенных задержках с запоминанием информации в промежуточных узлах имеем режим offline.

1.3.1 Глобальные сети с коммутацией пакетов
Коммутация пакетов в глобальных сетях – это коммутация сообщений, представляемых в виде адресуемых пакетов, когда канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Коммутаторы сети, в роли которых выступают шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения. В глобальных сетях для передачи информации применяются следующие виды коммутации:
- коммутация каналов (используется при передаче аудиоинформации по обычным телефонным линиям связи;
- коммутация сообщений (применяется в основном для передачи электронной почты, в телеконференциях, электронных новостях);
- коммутация пакетов (для передачи данных, в настоящее время используется также для передачи аудио - и видеоинформации)
Достоинством сетей коммутации каналов является простота реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей. При коммутации сообщений передача данных (сообщения) осуществляется после освобождения канала, пока оно не дойдет до адресата. Каждый сервер производит прием, проверку, сборку, маршрутизацию и передачу сообщения.

2. СЕТЬ INTERNET
2.1 Создание и развитие Internet

    Структура и основные принципы построения сети Интернет:

Internet – всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающих друг с другом информацией по каналам общественных телекоммуникаций.
Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи. Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи).Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через-провайдера.
Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную-паутину.
Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней. Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост – это любой компьютер, являющийся постоянной частью Internet, т.е. соединенный по Internet – протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Ри с. 2 Структура глобальной сети Internet

Для подсоединения линий связи к компьютерам используются специальные электронные устройства, которые называются сетевыми платами, сетевыми адаптерами(модемами).
Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами осуществляется по высокоскоростным каналам связи или магистралям. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть сети Интернет. Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet. Передача информации в Интернет обеспечивается благодаря тому, что каждый компьютер в сети имеет уникальный адрес (IP-адрес), а сетевые протоколы обеспечивают взаимодействие разнотипных компьютеров, работающих под управлением различных операционных систем. В основном в Интернет используется семейство сетевых протоколов (стек) TCP/IP. На канальном и физическом уровне стек TCP/IP поддерживает технологию Ethernet, FDDI и другие технологии. Основой семейство протоколов TCP/IP является сетевой уровень, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень обеспечивает перемещение пакетов в сети и управляет их маршрутизацией. Размер пакета, параметры передачи, контроль целостности осуществляется на транспортном-уровне-TCP.
Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К основным прикладным протоколам относятся: протокол удаленного досткпа telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы электронной почты: SMTP, POP, IMAP, MIME.
2.2 Способы доступа в Internet
В настоящее время известны следующие способы доступа в Интернет:

1. Dial-Up (когда компьютер пользователя подключается к серверу провайдера, используя телефон)– коммутируемый доступ по аналоговой телефонной сети скорость передачи данных до 56 Кбит/с;
2. DSL (Digital Subscriber Line) - семейство цифровых абонентских линий, предназначенных для организации доступа по аналоговой телефонной сети, используя кабельный модем. Эта технология (ADSL, VDSL, HDSL, ISDL, SDSL, SHDSL, RADSL под общим названием xDSL) обеспечивает высокоскоростное соединение до 50 Мбит/с (фактическая скорость до 2 Мбит/с). Основным преимуществом технологий xDSL является возможность значительно увеличить скорость передачи данных по телефонным проводам без модернизации абонентской телефонной линии. Пользователь получает доступ в сеть Интернет с сохранением обычной работы телефонной связи;
3. ISDN - коммутируемый доступ по цифровой телефонной сети. Главная особенность использования ISDN - это высокая скорость передачи информации, по сравнению с Dial-Up доступом. Скорость передачи данных составляет 64 Кбит/с при использовании одного и 128 Кбит/с, при использовании двух каналов связи;
4. Доступ в Интернет по выделенным линиям (аналоговым и цифровым). Доступ по выделенной линии - это такой способ подключения к Интернет, когда компьютер пользователя соединен с сервером провайдера с помощью кабеля (витой пары) и это соединение является постоянным, т.е. некоммутируемым, и в этом главное отличие от обычной телефонной связи.
5. Доступ в Интернет по локальной сети (Fast Ethernet). Подключение осуществляется с помощью сетевой карты (10/100 Мбит/с) со скоростью передачи данных до 1 Гбит/с на магистральных участках и 100 Мбит/сек для конечного пользователя. Для подключения компьютера пользователя к Интернет в квартиру подводится отдельный кабель (витая пара), при этом телефонная линия-свободна.
6. Спутниковый доступ в Интернет или спутниковый Интернет (DirecPC, Europe Online). Спутниковый доступ в Интернет бывает двух видов - ассиметричный и симметричный:
- Обмен данными компьютера пользователя со спутником двухсторонний;
- Запросы от пользователя передаются на сервер спутникового оператора через любое доступное наземное подключение, а сервер передает данные пользователю со спутника. Максимальная скорость приема данных до 52,5 Мбит/с
7. Доступ в Интернет с использованием каналов кабельной телевизионной сети, скорость приема данных от 2 до 56 Мб/сек. Кабельный Интернет (“coax at a home”). В настоящее время известны две архитектуры передачи данных это симметричная и асимметричная архитектуры. Кроме того, существует два способа подключения: а) кабельный модем устанавливается отдельно в каждой квартире пользователей; б) кабельный модем устанавливается в доме, где живет сразу несколько пользователей услуг Интернета.

8. Беспроводные технологии последней мили:

    WiFi
    WiMax
    RadioEthernet
    MMDS
    LMDS
    Мобильный GPRS – Интернет
WiFi (Wireless Fidelity - точная передача данных без проводов) – технология широкополосного доступа к сети Интернет. Скорость передачи информации для конечного абонента может достигать 54 Мбит/с. Радиус их действия не превышает 50 – 70 метров. Беспроводные точки доступа применяются в пределах квартиры или в общественных местах крупных городов.
WiMAX (Worldwide Interoperability for Microwave Access), аналогично WiFi - технология широкополосного доступа к Интернет. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. В настоящее время WiMAX частично удовлетворяет условиям сетей 4G, основанных на пакетных протоколах передачи данных. К семейству 4G относят технологии, которые позволяют передавать данные в сотовых сетях со скоростью выше 100 Мбит/сек. и повышенным качеством голосовой связи. MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал. LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом в несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами (RadioEthernet). Скорость передачи данных до 45 Мбит/c. Мобильный GPRS – Интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии GPRS необходимо иметь телефон со встроенным GPRS - модемом и компьютер. Технология GPRS обеспечивает скорость передачи данных до 114 Кбит/с. При использовании технологии GPRS тарифицируется не время соединения с Интернетом, а суммарный объем переданной и полученной информации. Вы сможете просматривать HTML-страницы, перекачивать файлы, работать с электронной почтой и любыми другими ресурсами Интернет. Технология GPRS - это усовершенствование базовой сети GSM или протокол пакетной коммутации для сетей стандарта GSM. EDGE является продолжением развития сетей GSM/GPRS. Технология EDGE (улучшенный GPRS или EGPRS) обеспечивает более высокую скорость передачи данных по сравнению с GPRS (скорость до 200 Кбит/сек). EDGE (2,5 G) – это первый шаг на пути к 3G-технологии.

Мобильный CDMA - Internet. Сеть стандарта CDMA - это стационарная и мобильная связь, а также скоростной мобильный интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии CDMA необходимо иметь телефон со встроенным CDMA - модемом или CDMA модем и компьютер. Технология CDMA обеспечивает скорость передачи данных до 153 Кбит/с или до 2400 Кбит/с - по технологии EV-DO Revision 0. В настоящее время технология CDMA предоставляет услуги мобильной связи третьего поколения. Технологии мобильной связи 3G (third generation - третье поколение) - набор услуг, который обеспечивает как высокоскоростной мобильный доступ к сети Интернет, так и организовывает видеотелефонную связь и мобильное телевидение. Мобильная связь третьего поколения строится на основе пакетной передачи данных. Сети третьего поколения 3G работают в диапазоне около 2 ГГц, передавая данные со скоростью до 14 Мбит/с. .
9. В настоящее время для " последних метров" доступа в Internet применяются технологии Home PNA (HPNA) и HomePlug. Доступ в Интернет по выделенным линиям Home PNA или HPNA (телефонным линиям) и доступ через бытовую электрическую сеть напряжением 220 вольт. Обычно доступ к Интернету по выделенным линиям Home PNA и HomePlug комбинируется с такими методами доступа как DSL, WiFi, и другими, т.е. для "последних метров" доступа применяются технологии Стандарт HomePlug 1.0 доступ к Интернет через бытовую электрическую сеть поддерживает скорость передачи до 14 Мбит/с. максимальная протяжённость между узлами до 300 м. Компания Renesas, выпустила модем в виде штепсельной вилки для передачи данных по электросетям. Технология PLС (Power Line Communication) позволяет передавать данные по высоковольтным линиям электропередач, без дополнительных линий связи. Компьютер подключается к электрической сети и выходит в Интернет через одну и ту же розетку. Для подключения к домашней сети не требуется никаких дополнительных кабелей. К домашней сети можно подключить различное оборудование: компьютеры, телефоны, охранную сигнализацию, холодильники и т.д.

2.3 Адресация в сети Internet
Основным протоколом сети Интернет является сетевой протокол TCP/IP. Каждый компьютер, в сети TCP/IP (подключенный к сети Интернет), имеет свой уникальный IP-адрес или IP – номер. Адреса в Интернете могут быть представлены как последовательностью цифр, так и именем, построенным по определенным правилам. Компьютеры при пересылке информации используют цифровые адреса, а пользователи в работе с Интернетом используют в основном имена.
Цифровые адреса в Интернете состоят из четырех чисел, каждое из которых не превышает двухсот пятидесяти шести. При записи числа отделяются точками, например: 195.63.77.21. Такой способ нумерации позволяет иметь в сети более четырех миллиардов компьютеров. Для отдельного компьютера или локальной сети, которые впервые подключаются к сети Интернет, специальная организация, занимающейся администрированием доменных имен, присваивает IP – номера. Первоначально в сети Internet применялись IP – номера, но когда количество компьютеров в сети стало больше чем 1000, то был принят метод связи имен и IP – номеров, который называется сервер имени домена (Domain Name Server, DNS). Сервер DNS поддерживает список имен локальных сетей и компьютеров и соответствующих им IP – номеров. В Интернете применяется так называемая доменная система имен. Каждый уровень в такой системе называется доменом. Типичное имя домена состоит из нескольких частей, расположенных в определенном порядке и разделенных точками В Интернете доменная система имен использует принцип последовательных уточнений также как и в обычных почтовых адресах - страна, город, улица и дом, в который следует доставить письмо.
Доменная система образования адресов гарантирует, что во всем Интернете больше не найдется другого компьютера с таким же адресом. В системе адресов Интернета приняты домены, представленные географическими регионами. например: Украина – ua; Франция - fr; Канада - са; США - us; Россия - ru. Существуют и домены, разделенные по тематическим признакам, например:
Учебные заведения – edu; Правительственные учреждения – gov; Коммерческие организации - com.

В последнее время добавлены новые зоны, например: biz, info, in, .cn и так далее. При работе в Internet используются не доменные имена, а универсальные указатели ресурсов, называемые URL (Universal Resource Locator). URL - это адрес любого ресурса (документа, файла) в Internet, он указывает, с помощью какого протокола следует к нему обращаться, какую программу следует запустить на сервере и к какому конкретному файлу следует обратиться на сервере.

2.4 Семейство протоколов TCP/IP
Протоколы обмена маршрутной информацией стека TCP/IP
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

    дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
    алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP. Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто. Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть. Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell. В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах. Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
и т.д.................
Вверх